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Co-Designing Programmable Fidgeting Experience with
Swarm Robots for Adults with ADHD
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Figure 1: An example of multi-robot fidgeting interaction derived from the co-design process. A: the initial design by a
participant from the Design Workshop, B&C: implementation of the initial design with robots. Users can adjust the radius and
speed by tilting the controller robot (B). Even when interrupted, a robot can recover (C).

ABSTRACT
Individuals with ADHD grapple with elevated stress levels, emo-
tional regulation challenges, and difficulty sustaining focus. Fid-
geting, a behavior traditionally frowned upon, has been shown to
help people with ADHD in concentration, emotional and mental
state management, and energy regulation. However, traditional
fidgeting devices have limited fixed affordances providing cookie-
cutter style fidgeting experience to all despite individual differences.
Recognizing the uniqueness of individual fidgeting tendencies, we
use small tabletop robots to provide a customizable fidgeting inter-
action experience and conduct co-design sessions with 16 adults
diagnosed with ADHD to explore how they envision their fidget-
ing interactions being changed with these programmable robots.
We examine core elements defining a successful fidgeting interac-
tion with robots, assess the significance of customizability in these
interactions and any common trends among participants, and inves-
tigate additional advantages that interactions with robots may offer.
This research reveals nuanced preferences of adults with ADHD
concerning robot-assisted fidgeting.
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1 INTRODUCTION
Attention Deficit Hyperactivity Disorder (ADHD) is a psychiatric
conditions that manifests as persistent hyperactivity, inattention,
and impulsivity, which can significantly impacting daily life [55].
Fidgeting, commonly seen in ADHD as a symptom of hyperactivity,
is often stigmatized as a sign of distraction or lack of focus. However,
a growing body of research suggests that controlled fidgeting can
enhance concentration and optimize attention [3]. Fidgeting can
also aid individuals with ADHD, who often grapple with emotional
dysregulation [46], in the regulation of emotional and mental states
[22].

Fidgeting varies widely among individuals, influenced by per-
sonal habits and sensory responses. While one person may find
relief in foot tapping or pen clicking, another might require tac-
tile engagement with specialized tools. In addition to divergent
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preferences and needs of individuals relating to fidgeting, individu-
als with ADHD can exhibit both hypo-responsiveness and hyper-
responsiveness to sensory stimuli [39]. Hypo-responsiveness refers
to having a higher threshold for noticing tactile, auditory, or other
sensory inputs, or appearing to be indifferent or unaware of sen-
sory stimuli that would typically provoke a response in others.
Conversely, hyper-responsiveness refers to an exaggerated or in-
tensified response to sensory stimuli, such as feeling overwhelmed
by bright lights, loud noises, certain textures, or even mild tactile
stimuli. Thus, it’s essential for fidget devices to be adaptable, cater-
ing to the distinct sensory needs and varied fidgeting preferences
of individuals.

Currently, there is a diverse assortment of fidget tools available
on the market, yet they often lack customizability, being built with
fixed parts that support only specific interactions stemming from
standardized designs. Although these devices offer some versatil-
ity, their fixed nature means users must completely replace them
rather than adjust existing parts to suit their changing needs or
preferences.

In response to these shortcomings, there has been recent work
on creating more dynamic solutions. A notable project by Kim et al.
introduced SwarmFidget [25] and demonstrated the potential of us-
ing small robots for fidgeting purposes. They utilized swarm robots
to implement fidgeting interactions where the users can interact
with the robots through touch or gesture to receive haptic, visual, or
audio feedback from the robot(s). Using small robots for fidgeting
purposes offers several advantages. Robots can be engineered to
provide a range of haptic, tactile sensations and interactive experi-
ences by incorporating different materials, sensors, speakers, and
displays. The robots can be programmed to deliver different lev-
els of responsiveness from subtle to pronounced sensory feedback
based on the user’s sensory needs. The programmability of the
robots’ behavior also enables a wide variety of interactions that are
not confined to the constraints of passive mechanical components.
Moreover, the programmability of such robots would allow users
to fine-tune their interactions, making the fidgeting experience
perfectly personalized and effective, thus bridging the gap between
traditional limitations and the potential for a more engaging and
customizable fidgeting experience.

While SwarmFidget introduced the idea of fidgeting with robots
and conducted an exploratory study about the perception and reac-
tion from the general users [25], the potential benefits of fidgeting
with robots could be particularly relevant and beneficial to individ-
uals with ADHD by catering to their varied sensory needs, from
hypo- to hyper-responsiveness. Customizable fidgeting interactions
and the versatility offered by the programmability of these robots
provide tailored tactile, auditory, and visual feedback, and help
maintain sustained interest and engagement. This is important for
those with ADHD who require variety and may either quickly lose
interest in unchanging stimuli or find sudden changes too over-
whelming depending on their responsiveness. Therefore in this
work, we investigate how a group of programmable robots may
offer an adaptable and engaging solution, enhancing focus and
emotional regulation for ADHD individuals.

Recognizing that individuals with ADHD could especially bene-
fit from dynamic and customizable fidgeting devices and the lack
of assistive technologies available for adults with ADHD [49], we

adopted a co-design approach. This method enabled us to collabo-
rate directly with adults with ADHD to create fidgeting interactions,
incorporating their insights to develop technologies that truly meet
their needs.

Our co-design process was divided into two parts. The first part
was a co-design workshop conducted in a group setting, where
participants explored fidgeting interactions with robots and created
their own interaction designs collaboratively with other partici-
pants. The second part was an evaluation workshop conducted
one-on-one with the facilitator, during which participants had the
opportunity to experience and assess the effectiveness of both their
own designed interactions and those designed by other participants.

Through our co-design workshops, we explored how different
types of feedback during fidgeting interactions with swarm robots
could be perceived by adults with ADHD. We describe the inter-
actions that were designed and evaluated by adults with ADHD
and present their perceptions of the designed interactions. We also
assessed the likelihood of future usage of the designed interactions.
We identified components essential for creating satisfying fidgeting
interactions and suggested hardware improvements to make the
robots more suitable for such interactions. Finally, we presented
alternative applications for interacting with swarm robots.

Our contribution is multifaceted: we investigated the needs and
preferences of adults with ADHD with regard to the design of
fidgeting with swarm robots. Through a co-design process, we
generated unique fidgeting interactions with swarm robots and
presented key design considerations for swarm robot-based fid-
get tools, particularly for adults with ADHD. Finally, we outlined
potential alternative applications for swarm robot-based fidgeting
systems.

2 RELATEDWORK
This section provides a more in-depth background of ADHD & fid-
geting, followed by coverage of relevant domains such as smart fid-
get devices, swarm robotics, and designing for people with ADHD.

2.1 ADHD & Fidgeting
Attention Deficit Hyperactivity Disorder (ADHD) is one of the most
prevalent psychiatric conditions which affects 3-7% [48] of adults.
ADHD manifests as persistent hyperactivity, inattention, and im-
pulsivity [55]. Adults diagnosed with ADHD are more prone to
experiencing inner restlessness and an inability to relax. Hyperac-
tivity can be exhibited as excessive fidgeting [16, 54], whereas inat-
tention is often presented as distractibility, a tendency to become
easily bored, a preference for variety, and heightened sensitivity to
stress [30, 42]. Difficulties with inattention frequently result in chal-
lenges in completing academic tasks, consequently leading to lower
academic performance in school and in the professional setting
compared to peers with similar cognitive capabilities [5, 11]. Fur-
thermore, many adults with ADHD experience mood swings with
frequent emotional highs and lows, as well as occasional outbursts
of irritability [30].

Fidgeting, prevalent among individuals with ADHD, is acknowl-
edged as a symptom of ADHD by the DSM-5 (The Diagnostic and
Statistical Manual of Mental Disorders, Fifth Edition) [2]. Fidget-
ing is defined as a repetitive, non-goal-directed action [40], and
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although it is often stigmatized as a sign of distraction or lack of
focus, a growing body of research suggests that there is a variety
of beneficial effects from fidgeting [7, 29, 36, 41, 56]. Controlled
fidgeting, such as using fidget tools or engaging in subtle, repetitive
movements, has been demonstrated to enhance concentration and
optimize attention [3]. Fidgeting can serve as a means to channel
excess energy and restlessness, allowing individuals to redirect
their attention more effectively toward the tasks at hand, while also
contributing to the management of emotional and mental states
[22]. Given that individuals with ADHD may grapple with emo-
tional fluctuations and dysregulation [46], fidgeting can offer a form
of self-soothing, helping individuals regulate their emotions and
maintain a calmer mental state. Thus, fidgeting offers a multifac-
eted approach to improving the overall well-being and functioning
of those with ADHD by enhancing concentration and assisting in
emotion regulation.

2.2 Smart Fidget Devices
There have been various explorations into the development of smart
fidget devices. Woodward and Kanjo introduced the iFidgetcube, a
device equipped with multiple physiological sensors that can assess
user well-being using deep learning classifiers [56]. Karlesky and
Isbister created fidgeting experiences through the Sifteo Platform,
featuring interactive cubes with touch-sensitive displays and sen-
sors [20, 21]. Ji and Isbister advanced this concept with AR Fidget,
an AR glasses-based system that integrates fidgeting techniques
like tapping and swiping with immersive visuals and sounds to in-
fluence users’ emotional states [18]. In a unique approach, Domova
proposed a fidget device that interacts with smart lighting systems,
allowing users to adjust features like brightness and color [10].

2.3 Swarm Robotics
Inspired by natural swarms, roboticists have pioneered the develop-
ment of swarm robots: large groups of robots operating in tandem
towards a shared objective. These robot swarms provide benefits
such as collective intelligence, adaptability, and resilience to in-
dividual failures. Certain platforms can mimic swarm behaviors
through decentralized intelligence, with some managing up to 1,000
robots [43]. While ample research has delved into the operational
facets of swarm robots, like control [1, 6, 45], exploration of direct
physical interaction remains limited.

As robots become smaller and more common, it’s becoming im-
portant to understand interactions with robot swarms, especially
given recent work have shown that even the robot’s mere pres-
ence affects human cognition, emotion, and motivation [23, 24, 35].
Furthermore, HCI researchers are actively exploring swarm user
interfaces tailored for interactive applications, spanning data visu-
alization [19, 31, 32, 53], VR haptic feedback [12, 34, 51, 52, 57], and
educational tools [15, 33, 38]. While several studies have probed ro-
bot motions for interaction, evaluating their influence on user emo-
tions [26, 44] and clarity [28], in-depth examination of bi-directional
haptic interactions with robot swarms is scant.

Notably, Ozgur et al. delved into haptic engagements with a
singular mobile robot, hinting at the potential for a swarm-scale ap-
plication [37]. Meanwhile, Kim and Follmer assessed haptic stimuli
perception from robot swarms and user-defined haptic patterns for

social touch conveyance [27]. Building on this, Kim et al. evaluated
the feasibility of swarm robots for bi-directional haptic interactions
in fidgeting contexts, probing their dynamic facilitation of fidgeting
and user reception of such interactions [25]. In this work, we ex-
plore the use of swarm robot-based fidgeting for adults with ADHD,
a population who may especially benefit from gaining access to
programmable fidgeting experience.

2.4 Designing for people with ADHD
In their comprehensive literature review, Spiel et al. reflected on
technologies tailored for individuals with ADHD, highlighting that
a significant portion of the studies they examined primarily ad-
dressed ADHD in children and adolescents [49]. They noted that
the predominant research trend leaned towards interventionist or
diagnostic methods, such as LemurDx [4]. Furthermore, many of
the interventionist technologies, such as Blurtline [47] and KITA
and WRISTWIT [14], were devised to "mitigate" ADHD behaviors
viewed as disruptive compared to conventional behavioral stan-
dards. Despite the positive intentions behind these projects, they
can perpetuate established societal behaviors, placing the burden on
the individual with ADHD to conform. This paradigm emphasizes
prescriptive solutions over assistive technologies [50]. Moreover,
Spiel at al. stressed the lack of direct engagement with individuals
with ADHD in HCI research, instead opting to collaborate with
parents, educators, or medical professionals. This could lead to a
mismatch between the genuine needs of people with ADHD and
the presuppositions held by healthcare practitioners [49]. Recog-
nizing that individuals with ADHD could especially benefit from
dynamic and customizable fidgeting devices and the lack of tech-
nologies for adults with ADHD, we chose a co-design approach to
co-create fidget tools with adults with ADHD. In doing so, we aimed
to develop technologies that effectively address the needs of people
with ADHD and improve the effectiveness of these technologies by
gaining valuable insights from neurodivergent individuals.

3 METHODOLOGY
The co-design consisted of two workshops: the Design Workshop
and the Evaluation Workshop. We conducted four design work-
shops with 3-5 participants attending each workshop, totaling 16
participants across all workshops (Table 1). The design workshops
involved interviewing participants about their fidgeting habits, al-
lowing them to interact with swarm robots, and facilitating the
collaborative design of fidgeting interactions with these robots.
Each workshop lasted from 2.5 to 3 hours. On the other hand, the
evaluation workshops were one-on-one sessions where half (8 out
of 16) of the participants returned to experience and provide feed-
back on the interactions developed during the design workshops.
The evaluation workshops lasted approximately 1 hour. All par-
ticipants were compensated CAD $16.75 per hour in the form of
an Amazon gift card. This research received approval from the
University’s Institutional Review Board, and participants gave their
informed consent.

3.1 Setup for Design Workshop
Building on the design space from SwarmFidget [25], we programmed
several single-robot and multi-robot interaction prototypes using
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Figure 2: Web-based UI applications for customizing fidgeting interactions: A - UI for modifying single-robot interactions. B -
UI for modifying multi-robot interactions.

Toio robots (Figure 3) to provide participants with a practical demon-
stration of how robots can be used for fidgeting purposes and to
facilitate initial participant engagement. The single-robot interac-
tions were focused on the capabilities of the individual robots and
the core mechanics of the interactions, that is different ways of
triggering reactions from the robots. Meanwhile, the multi-robot in-
teractions demonstrated how the core mechanics of the interactions
could be extrapolated to involve multiple robots. We also created
web-based UI applications (Figure 2) that enabled participants to
alter specific elements of the initial fidgeting interactions, thereby
facilitating a deeper understanding of their personal preferences
for fidgeting with robots.

Toio robots, were used because of the Sony Toio platform’s porta-
bility and its advanced navigation algorithms that produce fluid,
synchronized robot movements. The Toio robots have dimensions
of 3.2cm x 3.2cm x 2.5cm and can move at a maximum speed of
35cm/sec. The Toio robots are also equipped with a 6-axis detection
system, which allows them to detect movements and orientations
across six degrees of freedom, tracking three translational and three
rotational movements. They can also identify their posture, detect
collisions, recognize double-taps, and sense shaking. The robots
can also produce sounds via a piezoelectric speaker and display
colors through an indicator button located at their base (Figure 3).
Each Toio robot’s position can be tracked with an error margin
of 1mm by the system through specially designed tracking mats
printed with small dots (30cm x 42cm or 56cm x 56cm).

We created separate web-based UI applications for both single-
robot and multi-robot interactions, enabling participants to tailor
specific aspects of these interactions. These aspects included ad-
justing robot speed, choosing the number of robots involved, and
selecting the type of feedback - haptic, auditory, and/or visual (see
Figure 2 for detailed options). This separation into different appli-
cations allowed for a simpler and more targeted user experience,
specific to each interaction type.

Figure 3: Toio robots which were used in the Co-designWork-
shops.

3.1.1 Example Single-robot Fidgeting Interactions Used during the
Design Workshop. The single-robot interactions were split into two
categories. The first category enabled participants to activate robot
responses through various triggers: clicking its button, shaking it,
tilting its angle, or double-tapping the robot. Depending on the
employed trigger, the robot would offer feedback in the form of
haptic sensations, sounds, or lights. The feedback combination and
intensity were modifiable using the web-based UI application (Fig-
ure 2, A). The second interaction category centered on altering the
robot’s position on the tracking mat, achieved by flicking, pushing,
or manually repositioning the robot to a different location on the
mat. Once displaced, the robot was programmed to return to its
initial position at a speed set by the user, adjustable via the same
web application. These interactions are extensions of those from
prior work [25] with a few identical interactions, such as the flick
interaction where the robot returns to the same location when
disturbed, but also several new interactions, including shake/slope
where once the robot is shaken/tilted, it reacts with either light or
sound.

3.1.2 Example Multi-robot Fidgeting Interactions Used during the
Design Workshop. The multi-robot interactions were classified into
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four categories: Magnet, Shape, Remote, and Conveyor. The web-
based UI application (Figure 2, B) allowed users to easily switch
between the different types of interactions and to modify certain
aspects of the interactions based on their preferences. For each
interaction type, participants could alter the robots’ speed.

(1) Magnet Interaction: As shown in Figure 4, users could tog-
gle between ’attract’ and ’repel’ options and adjust the
strength of the magnets, determining the distance at which
the robots would either attract or repel each other.

(2) Shape Interaction: Robots were positioned in a circular for-
mation and programmed to return to designated locations
on the mat if displaced. Participants could modify the num-
ber of robots engaged in this interaction, ranging from a
minimum of three to a maximum of five.

(3) Remote Interaction: A singular robot was employed to con-
trol the movements of the others. Tilting the ’remote’ robot
dictated the direction andmovement of the rest of the robots
(Figure 5). The ’remote’ robot could also be positioned on
the tracking mat to prompt the other robots to move closer
to its location (Figure 5, D). Participants had the option to
vary the number of robots, with two as the minimum and
five as the maximum.

(4) Conveyor Interaction: This was an extension of the single-
robot interaction centered on altering the robot’s position
on the tracking mat through flicking, pushing, or manually
repositioning the robot to a different location on the mat.
If the leading robot in the line was displaced from its loca-
tion, it would move to the end of the line, prompting the
subsequent robots to advance to the next position (Figure
6).

Figure 4: A: Magnet Attract interaction. B: Magnet Repel
interaction

3.2 Participants
For the co-design workshops, 16 adults diagnosed with ADHDwere
recruited from a public institution. For the initial design workshop,
the ad was circulated to the institution’s list of students with ac-
cessibility needs (with the administrator’s approval), noting the
inclusion criteria of being diagnosed with ADHD. We let the par-
ticipants decide whether they satisfied this criterion or not. For
the second evaluation workshop, the participants from the initial
design workshop were asked to participate. In addition to ADHD,
two of the participants were also diagnosed with Autism and one
was diagnosed with Functional Neurological Disorder (FND). The
participants were made up of 8 women, 7 men, and 1 genderfluid
person. The ages ranged from 18 to 31, with an average of 23.6 and
a standard deviation of 3.5. The participant group was characterized

Figure 5: Remote Interaction: A - Robots moving forward
controlled by the ’remote’ robot. B - Robots moving back-
ward controlled by the ’remote’ robot. C - Robots turning left
controlled by the ’remote’ robot. D - Robots moving towards
the ’remote’ robot.

Figure 6: Conveyor: If the first robot is displaced from its
programmed position, it will go to the end of the line and
the rest of the robots will shift one position forward.

by a diverse range of racial and educational backgrounds. For a
detailed description of the participant demographics, please refer
to Table 1.

3.3 Design Workshop
The design workshops were held in person with groups of 3 to 5
participants to allow for collaboration between participants in the
brainstorming and development of new fidgeting interactions with
robots. The 16 recruited participants were assigned to these work-
shops solely based on their availability and schedule compatibility.

The participants sat around a large table with a variety of fid-
get tools such as a fidget spinner, fidget cube, pop-it fidget toy,
stress ball, and a variety of pens laid out in the middle of the table
for participants to interact with as needed throughout the design
workshops. The provided fidget tools could be used for reference
or comparison, or as inspiration for brainstorming new fidgeting
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Table 1: Participant Demographics and Workshop Attendance

ID Gender Age Race Neurological Disorders Education Attendance
P3 W 25 South Asian ADHD Business W1, E1
P4 M 31 Middle Eastern ADHD Software Systems W1
P5 M 25 South Asian ADHD Business W1, E2
P6 W 21 Black/African American ADHD, FND* N/A W1
P7 W 24 Middle Eastern ADHD Criminology, Political Science W2
P8 Gf* 20 White ADHD French W2, E3
P9 M 19 White ADHD Sustainable Energy Engineering W2
P10 W 18 Indigenous - Metis ADHD, ASD*, MDD*, ANX* Education W2
P11 W 25 Filipino ADHD Interactive Arts and Technology W3
P12 M 24 White ADHD History W3, E4
P13 M 23 White ADHD Physics, Mathematics W3
P14 M 26 White ADHD Communications W4, E5
P15 M 23 White ADHD Computer Science W4, E6
P16 W 25 White ADHD Biological Sciences W4
P17 W 19 South Asian ADHD, ASD* Computer Science W4, E7
P18 W 30 White ADHD Education W4, E8
Gf* - Genderfluid
FND* - Functional Neurological Disorder
ASD* - Autism Spectrum Disorder
MDD* - Major Depressive Disorder
ANX* - Anxiety

interactions with the robots. The participants were also given pa-
per to jot down thoughts and ideas for new interactions and draw
sketches of more complex robot movements that might be difficult
to convey with just speech. The design workshops were structured
in the following manner:

(1) Introduction of fidgeting: Initially, the participants were in-
troduced to the concept of fidgeting through a formal defi-
nition and examples (e.g., clicking a pen, tapping a finger,
shaking a leg).

(2) Brief interview on prior fidgeting experience: This segment
involved interviewing participants about their general fid-
geting habits, preferred fidgeting tools, and the impact of
fidgeting on themselves and others around them. While
encouraged to respond to all questions, participants were
informed that they could opt to pass on any question. The
aim of the introductory interview was to guide participants
in reflecting on their distinct fidgeting habits, preferences,
and favorite fidgeting objects. We delved into understand-
ing what facets of their fidgeting provided the most satisfac-
tion and pleasure. More than just pinpointing specific tools
or experiences, our discussion explored the broader social
context, considering the perceptions and implications of
their fidgeting behaviors.

(3) Toio robots and example fidgeting interactions The session
proceeded with a video showcasing Toio robots’ capabili-
ties, followed by a video demonstrating example fidgeting
interactions with swarm robots.

(4) Single-robot interactions: Participants were provided with
Toio robots and received a brief tutorial on using the ac-
companying web-based UI application shown in Fig. 2 to
explore various robot interactions. They were also given pa-
per to jot down thoughts or draw sketches of ideas for new
interactions. This phase, lasting about 45 minutes, allowed
participants to explore, discuss among participants, and
brainstorm new interaction concepts. The goal was to pro-
vide ample time for participants to experience interacting
with a single robot, thereby understanding their prefer-
ences for fidgeting with robots and using these preferences
to collaboratively develop new interactions. Participants

were asked to come up with at least one new interaction
or modify at least one of the provided examples based on
their preferences. Allowing participants to first focus ex-
clusively on single-robot interactions was intended to help
participants better understand the core mechanics of these
interactions, laying the groundwork for subsequent multi-
robot scenarios.

(5) Multi-robot interactions: After ample time with single-robot
interactions, the facilitator prepared the setup for multi-
robot interactions and introduced the web-based UI applica-
tion that accompanied the multi-robot interactions. Due to
resource constraints, participants shared a single setup for
these interactions, taking turns to experience them. This
phase also lasted about 45 minutes with each participant
having about 2-3 minutes to experience each multi-robot
interaction. Here, the participants were again asked to, as
a group, come up with at least one new design or build on
or modify one of the provided example multi-robot interac-
tions.

(6) Fidgeting with Robots Interview: The workshop concluded
with a group interview that delved into the participants’
thoughts on fidgeting with robots. This included a com-
parison with traditional fidget toys, a discussion of how
the robots’ software and hardware could be improved to
better facilitate fidgeting interactions, and discussions on
any other potential applications they envisioned for swarm
robots.

3.4 Analysis of Interaction Designs
Following the design workshops, the facilitator reviewed the par-
ticipants’ written and verbal feedback along with their proposed
designs. The goal was to transform these preliminary ideas into
specific, programmable interactions for Toio robots. This step was
necessary as the participants often described their desired interac-
tions at a high level, lacking the specific details needed for imple-
mentation. For example, participant P12 suggested that "the robots
should be arranged to be flicked with my left hand" without clari-
fying the precise arrangement of the robots. Additionally, due to
time constraints and to prevent the redundancy of testing nearly
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identical designs, similar designs were combined to form cohesive
interactions.

To systematically analyze the large volume of proposed designs
and feedback, the interviews and the rest of the workshop artifacts
were evaluated using Thematic Analysis. This qualitative method
involved coding the data to identify patterns and themes. Initially,
the facilitator familiarized themselves with the data by reading
through all the transcripts and notes multiple times. Open coding
was then conducted to label significant pieces of data related to
participants’ fidgeting behaviors, desired robot interactions, and
their impacts. These codes were grouped into broader themes such
as “Fidgeting in Public”, “Fidgeting in Private”, “Toio System Lim-
itation”, “Achievable in Web App”, “Positive Reaction”, “Negative
Reaction”, etc.

Due to the large number of proposed designs, we chose to pro-
ceed with only a subset of them. Specifically, the interactions that
could be achieved through the existing web UI (e.g., Figure 7 A)
were excluded due to lack of significant difference, as were designs
that were mentioned by only one participant (e.g., Figure 7 B and
C). Subsequently, features and similar designs that received men-
tion from at least two different participants were compiled. These
selected designs were then developed into interactions for further
evaluation during workshops. To assess the effectiveness of these
refined interactions, the original participants were invited back for
evaluation workshops. During these evaluation sessions, the par-
ticipants tested the programmed interactions (described in sections
4.3 and 4.4), sharing their thoughts and reactions. The thematic
analysis framework was again utilized to analyze this feedback.

3.5 Evaluation Workshop
The follow-up evaluation workshops were conducted on a one-
on-one basis with the facilitator. In these sessions, a total of 8
participants examined the new and modified fidgeting interactions,
which were informed by their feedback and ideas from the design
workshops. They also completed a survey to systematically capture
their thoughts on fidgeting with robots.

Each evaluation workshop spanned an hour, with the initial 45
minutes dedicated to hands-on interaction testing and the remain-
ing 15 minutes reserved for completing the survey. Participants
tested 8 interactions in total, 4 single robot interactions (discussed
in section 4.3) and 4 multi-robot interactions (discussed in section
4.4). They spent approximately 5 minutes on each interaction. The
participants were provided with a noise-canceling headset, which
could be used at their own discretion to mitigate the noise generated
by the robots’ motors. In a sequence echoing the design workshops,
they first evaluated the single-robot interactions before proceeding
to the multi-robot interactions. After testing all the interactions,
they filled out the survey to conclude the session.

During the evaluation workshops, participants were not able to
modify the interactions but were encouraged to verbally share their
impressions such as likes and dislikes, and suggest improvements.
Additionally, a survey was introduced to gather structured feed-
back on various aspects of the interactions, including the preferred
number of robots, desired responses from the robots (e.g., sound,
light, movement, vibration), and what aspects of fidgeting with
robots they found most compelling and engaging. This approach

also enabled us to collect explicit responses on topics that occa-
sionally arose during the design workshops. The survey included
short-answer questions covering potential alternative applications
for interactions with swarm robots, and the idea of robots initiating
interactions autonomously.

4 RESULTS & DISCUSSION
In our study, we presented some of the needs and challenges of
fidgeting behaviors of adults with ADHD as they relate to fidgeting
interactions with robots, and presented and evaluated new fidget-
ing interactions designed by adults with ADHD during our design
workshops. We also conducted a survey to see if the participants
felt the interactions they tested during evaluation workshops could
be considered as effective fidgeting interactions, with the findings
illustrated in Figure 8. Moreover, we identified the key elements
that adults with ADHD deem essential for an engaging fidgeting
experience. Finally, we outline the factors essential for satisfying
fidgeting interactions as identified by adults with ADHD, propose
hardware improvements for the robots to enhance their suitability
for fidgeting, and explore other potential applications for interact-
ing with swarm robots.

4.1 Fidgeting Experiences & Preferences
The in-depth interviews focusing on participants’ fidgeting be-
haviors highlighted the highly personal and individual nature of
fidgeting. Participants expressed a wide range of fidgeting actions,
such as playing with hair, feeling different textures, tossing objects,
twisting pen caps, and swiping between phone screens, to name a
few. These preferences were influenced by personal inclinations,
lifestyle factors, and the availability of fidget tools. For example, P18
and P8 frequently fidgeted with water bottles because they were
always at hand, whereas P15 preferred selecting from a diverse box
of fidget items at home, indicating a desire for variety to suit differ-
ent moods or needs. Similarly, P13 expressed a tendency to quickly
tire of fidget tools, often trading them with friends. This finding
largely echoes results from prior work that indicate the need for
personalization and customization for fidgeting [8, 13, 17, 21] and
reaffirms the need for programmable fidgeting devices such as the
swarm robots we leverage in this work.

Participants also discussed the challenges of restraining their
fidgeting, particularly in situations where it might be perceived
negatively, such as during public speaking events or job interviews.
They described an internal conflict between the urge to fidget and
the need to appear professional, noting that suppressing their fid-
geting often hampered their ability to concentrate.

These insights extend to their envisioned interactions with fid-
geting with robots. In public settings, participants favored small,
unobtrusive interactions to avoid drawing attention and disturbing
others around them. In contrast, in private settings, they were open
to more varied and unrestricted fidgeting interactions with robots,
showing a preference for satisfying experiences.

4.2 Fidgeting with Single vs Multiple Robots
All participants universally categorized the single-robot interac-
tions as suitable for fidgeting (Figure 8), noting "robot in itself is still
capable of a satisfactory number of fidgeting interactions" (P12).
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Figure 7: Examples of unimplemented designs. A is an example of an interaction that is feasible with the current UI shown in
Fig 2, while B and C are ideas that were mentioned by only a single participant and thus were not chosen for implementation.

However, individual preferences played a big role in whether the
participants deemed the interaction satisfying. For instance, P18
expressed "I think because they are all relatively simple, I would
say they are good for fidgeting, although I did not like all the inter-
actions".

Individual preferences also influenced how participants inter-
acted with the robots, especially in terms of their preferred triggers
and responses. For example, while a double tap or shake was most
popular among participants to trigger responses like spinning or
vibrations, respectively, some expressed a desire for alternative
triggers, such as gently dropping the robot (P17) or tossing it (P5).
Furthermore, there were specific aspects of the interactions that
certain participants found enjoyable. In particular, P3 said, "I like
the spinning one, but I would like to be able to feel it happening
on my finger. Like I would linger my finger on top of it while it
[spun]." Due to being indifferent to haptic feedback, P15 commented
regarding the Vibration Pattern interaction (detailed in section 4.3)
"I would shake it then [put] it onto the table and let it move back
to me, and I could focus on something else with the motor as the
audio cue on when to move it again."

The perception of whether multi-robot interactions can be classi-
fied as fidgeting seemed to depend on several factors: the simplicity
and predictability of the interaction, the familiarity of the interac-
tion, and each participant’s individual perception of the interac-
tions’ stimulation level. The conveyor interaction (Figure 6), which
consisted of five robots moving in unison in a predictable pattern,
was unanimously deemed as fidgeting due to the briefness and sim-
plicity of its movement, which did not overwhelm or overstimulate
observers. The magnet interaction (Figure 4) served as an exam-
ple of a familiar interaction. Since the robots were programmed
to mimic the behavior of magnets, participants, already familiar
with such interactions, required minimal focus for the interaction.
For the more complex interactions evaluated during the evaluation
workshops, opinions varied on whether they were considered fid-
geting, largely due to the differing levels of stimulation perceived
by each participant.

Therefore, the design of fidgeting interactions with robots must
be carefully tailored to balance stimulation and familiarity, ensuring

that they cater to the varied preferences and sensory thresholds
of individual users. These findings are consistent with the studies
by Diets et al. and Kim et al., which found that human perception
of robot interactions is significantly influenced by factors such as
speed, smoothness, and synchronization, impacting how emotion-
ally stimulating or positive the swarm motions are [9, 26].

It is important to note that even if some interactions were not
considered fidgeting by the majority of participants, there were
always outliers who enjoyed these interactions and deemed them
suitable for fidgeting. This is particularly significant in the context
of fidget tools, which are often developed with the preferences of
the majority in mind, thereby overlooking the needs of the minority.
However, programmable actuated fidgets offer a unique solution,
accommodating a wide range of preferences. This inclusivity allows
anyone to engage in fidgeting in their preferred way, ensuring that
even those with unconventional preferences can find satisfaction
and utility in these tools.

Would you label the following interactions as �dgeting?

Moving Circle

Modi�ed Conveyor

Expanding and  Contracting Circle

Modi�ed Remote

Single Robot Interactions

Yes
No

Figure 8: Overview of Interactions Deemed as Fidgeting by
Participants

4.3 Single Robot Interactions Derived from
Design Workshops

Based on the concepts developed during the design workshops,
four unique single-robot interactions were implemented and evalu-
ated in the subsequent evaluation workshops. The majority of the
designs for single-robot interactions were minor modifications of
the sample interactions that could be configured using the web UI
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Figure 9: Examples of single-robot interaction designs: The left figure depicts the Spin interaction, the middle top figure is a
sketch for the Infinity Loop interaction, the middle bottom figure contains the written description for the Vibration Pattern
interaction, and the right figure shows the pictorial and verbal description of the Toss interaction.

(e.g., Figure 7 A). For this reason, we selected designs that could
not be realized through the web UI alone. Figure 9 depicts some of
the ideas from the design workshops that were used to implement
the single-robot interactions.

(1) Infinity Loop: When the user double-taps the robot, it com-
mences movement in a path resembling an infinity loop, as
shown in Fig. 9.

(2) Spin: If the robot is lifted and then placed on a surface
or double-tapped, it initiates a spinning action, altering
directions after each rotation, completing a total of four
turns, as shown in Fig. 9.

(3) Vibration Pattern: By shaking the robot, users can initiate a
vibration pattern. This pattern can be changed to a different
rhythm by pressing the button located at the base of the
robot.

(4) Toss: Tossing and subsequently catching the robot triggers
sound feedback, as shown in Fig. 9.

4.4 Multi-robot Interactions Derived from
Design Workshops

Four multi-robot interactions were programmed based on partic-
ipant feedback during the design workshops and were evaluated
during the evaluation workshops.

4.4.1 Expanding and Contracting Circle. A controller robot is used
to alter the radius of the circle formed by five other robots (Figure
10). Users can increase the radius by tilting the controller upward,
decrease it by tilting downward, and toggle haptic feedback on the
controller with a double-tap function. This setup allows users to
directly manipulate the robots’ formation and feel corresponding
vibrations through the controller.

From the evaluation workshops, five out of eight participants
found this interaction appropriate for fidgeting (Figure 8). P5 en-
joyed the visual aspect and simple interaction with the controller,
and P18 appreciated the haptic feedback and control over the cir-
cle’s dynamics. However, P15 felt it required visual attention to be
satisfying, thus, not aligning with their concept of fidgeting.

4.4.2 Modified Conveyor. In this interaction, any robot’s displace-
ment from it’s position will trigger a shift in the positions of the

Figure 10: Expanding and Contracting Circle: Tilting robot
down to decrease the radius (left). Tilting the robot up to
increase the radius (right).

Figure 11: Modified Conveyor Interaction: Displacement of
any robot causes the shifting of the robots. This interaction
was modified to be used with the left hand so that the right
hand is available for the primary task.

robots. Additionally, the setup was altered to accommodate left-
handed use, allowing the dominant hand to remain free for other
tasks. The updated robot configuration is shown in Figure 11.

All participants from the evaluation workshops found this in-
teraction appropriate for fidgeting due to its simplicity and the
predictable movements of the robots, which allowed for undivided
attention on primary tasks (Figure 8). P14 valued the left-handed
design for multitasking. P15 enjoyed the ease of passive engage-
ment, stating, "I could passively flick it without looking at it, and
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the audio cue would let me know when to flick it again." P17 appre-
ciated the non-disruptive nature of the interaction, remarking, "I
can flick it and not focus on whether the robots would fall off or be
misaligned."

4.4.3 Modified Remote. The Remote interaction was modified to
mitigate issues identified in the design workshops, such as robots
rolling off the table and requiring excessive attention. Movement
was restricted to 5cm advances or retractions and 90-degree ro-
tations, simplifying control and aligning with the interaction’s
fidgeting intent (Figure 12). These changes prevent loss of control
and minimize distraction, allowing users to focus on their main
tasks while engaging with the robots, which can now be arranged
in various patterns for visual or auditory feedback with minimal
attention required.

Five out of eight participants from the evaluation workshops
found this interaction appropriate for fidgeting (Figure 8), focusing
on the remote’s use and the white noise from the robots’ move-
ment. However, three found its versatility overly engaging. P15
commented that "a lot of focus and brain power was devoted to
what cool patterns I could make and how to tweak the patterns to
be better."

Figure 12: Modified Remote: Allows users to arrange robots
in a desired pattern andmore them using the controller robot

4.4.4 Moving Circle. Five robots move synchronously in a circular
formation, maintaining a uniform distance from one another. They
are controlled by a sixth robot that starts, stops, and alters the
speed and the radius of the circular movement. Users can interact
by disrupting the pattern for tactile and visual feedback or by using
the controller for auditory feedback through changes in motion
speed (see Figure 1).

From the evaluation workshops, two participants considered
the Moving Circle interaction appropriate for fidgeting (Figure 8).
Others, found the interaction enjoyable but felt it was too complex
for fidgeting, with P3 citing the multitude of components and P8
and P5 likening it to playing. However, some, like P12, enjoyed
specific aspects, such as observing the effect of their actions on the
’moving circle’.

4.5 Likelihood of Future Usage
We were interested in assessing participants’ attitudes toward the
future usage of the evaluated interactions. A Likert scale, ranging
from 1 (Very low) to 7 (Very high), quantitatively captured par-
ticipants’ intentions to continue using the fidgeting interactions
(Figure 13). These ratings fare similarly or slightly higher than the
ones from the exploratory study in SwarmFidget, potentially due
to our interactions being co-designed with participants [25]. Sin-
gle Robot Interactions were well-received, with most participants
indicating a high likelihood of future use. The Modified Conveyor
interaction stood out among multi-robot interactions, with the ma-
jority rating the likelihood of future usage as 6 or above. Similarly,
the Modified Remote interaction also received favorable ratings.
In contrast, the Expanding and Contracting Circle interaction had
mixed responses, and the Moving Circle interaction received com-
paratively lower ratings, with several participants neutral about
future use. Overall, with all interactions averaging above 4, the
results suggest a positive trend in accepting and continuing to use
robots as fidget devices.

Moving Circle

Modi�ed Conveyor

Expanding and  Contracting Circle

Modi�ed Remote

Single Robot Interactions

7 (very high)
6
5
4 (neutral)
3
2
1 (very low)

Figure 13: Participants’ ratings of the likelihood of future
usage for different fidgeting interactions.

It is important to note that these attitudes toward the likelihood
of future usage were based on our implementation of programmable
actuated fidgets, considering all of its current flaws identified by
the participants. We expect that if the suggested hardware improve-
ments (discussed in Section 4.8) are made and a system is developed
that allows users to easily create and modify their own fidgeting
interactions, the attitudes toward programmable actuated fidgeting
would become even more positive.

4.6 Importance of Customization
The survey from the evaluation workshops, combined with the
participants’ comments, has emphasized the importance of cus-
tomization in fidgeting interactions with robots, which is aligned
with findings from prior work [8, 13, 17, 21]. The data, as illustrated
in Figure 14, clearly displays a wide range of participant preferences.
This is particularly noticeable in categories such as robot speed,
where the choices of participants cover the full spectrum. In haptic
feedback, most participants preferred medium to very strong inten-
sity, although there were exceptions, with one participant favoring
minimal feedback (Figure 14).

Furthermore, participants’ comments also provide deeper in-
sights into their satisfaction levels when interactions align with
personal preferences. For instance, positive feedback was given
when robot speeds matched individual preferences, with remarks
such as “It feels like it’s going as fast as my brain” (P3), “I found it
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Sound Feedback

very strong
strong
medium
very weakHaptic  Feedback
want 
neutral
don’t want 

Speed

varies
very fast
fast
medium
slow
very slow0 2 4 6 8

Light Feedback

Figure 14: Participants’ preferences on the intensity of haptic,
light, and sound feedback, and robot speed.

quite satisfying when it moved slowly” (P15), and “slow is soothing”
(P5). Additionally, haptic feedback was highly regarded by partici-
pants like P17, who described it as “satisfying.” Visual stimulation
from light feedback also received positive comments, such as “I
want to be able to see light variability” (P12) and “the light feedback
is cute” (P3).

Conversely, less preferred aspects, such as certain speeds and
sound feedback, elicited strong negative reactions. Participants
expressed discomfort with comments like “I hate slow things; they
bugme” (P8), “I found the sound feedback very annoying” (P18), and
“it’s shrill, distracting, and hurts my head” (P14). These negative
reactions highlight the dissatisfaction that arises when interactions
fail to meet individual preferences.

These findings illustrate the diverse needs and preferences in
fidgeting interactions with robots. The extensive range of both
positive and negative feedback regarding the robots’ speed, sound,
haptic, and light feedback highlights the emotional impact of these
fidgeting experiences. The strong preferences and reactions, espe-
cially toward the speed and sound, might be explained by hypo-
and/or hyper-responsiveness since people with ADHD might ex-
hibit hypo- or hyper-responsiveness to certain stimuli [39]. The
diverse preferences observed reinforce the importance of customiza-
tion, emphasizing that for fidgeting interactions with robots to be
truly engaging and effective, they must be tailored to meet the
unique preferences of each user.

4.7 Features Essential for a Satisfying Fidgeting
Interaction with Robots

The design workshops, along with evaluations of new and modi-
fied fidgeting interactions, identified the immediate response from
robots as the most essential feature for a satisfying fidgeting expe-
rience, as shown in Figure 15. Any delay or inconsistency between
the user’s action and the robot’s reaction significantly diminished
satisfaction. This critical need for prompt responsiveness was cor-
roborated by a survey in which 7 out of 8 participants deemed it
necessary for satisfying interactions, while one participant pre-
ferred it as an optional feature.

The design workshops revealed that users valued the synchronic-
ity and precision of movements in interactions involving more than
one robot. Concerns arose when the robots’ movements were unre-
stricted, as participants worried about accidentally dropping them.
This led to a need for constant vigilance to prevent the robots
from rolling off surfaces or colliding with objects. In the survey, as
shown in Figure 15, four out of eight participants indicated that

they wanted uniform movements as an option, and three out of
eight indicated that uniformmovements are necessary for satisfying
fidgeting interactions.

The quietness of the motor and speed emerged as more signifi-
cant factors. Participants found the motors of the robots to be too
loud when the robots were moving at higher speeds; four out of
eight participants indicated in the survey that the quietness of the
motor is essential for a satisfying fidgeting experience. Additionally,
four out of eight participants expressed a desire for the option of
faster speeds during their fidgeting interactions, and P8 considered
faster speeds essential due to their pronounced distaste for slower
speeds (Figure 15).

The inclination towards uniform movements may stem from the
potentially distracting effect of non-uniform movements, which
can be overwhelming for effective fidgeting purposes, as mentioned
in prior work [25]. The comments regarding the noise generated
by the motors of the robots echo results from prior work indicating
that people avoid fidgeting objects that are too loud [36].

Immediate Response
Uniform Movements

Haptic Feedback

Quietness of the Motor
Faster Speed

Reounder Shape

Sound Feedback
Light Feedback

necessary
optional
neutral
nice to have
not necessary

Figure 15: Overview of features essential for satisfying fid-
geting interactions with robots.

4.8 Hardware Improvements
During the design and evaluation workshops, participants were
interviewed and surveyed about potential hardware improvements
to enhance robots for fidgeting purposes. From this feedback, three
prominent themes for enhancement emerged: focusing on the ro-
bot’s physical texture, stability features, and the addition of cus-
tomizable elements, each contributing to a more tailored and sat-
isfying fidgeting experience. The robot’s physical characteristics,
such as appearance and tactile qualities, play a significant role in
shaping the user’s fidgeting experience. Many participants indi-
cated a preference for a softer texture, suggesting a shift from hard
plastic to a softer, rubbery material, which was also mentioned
frequently in prior work [8, 21, 25]. They also favored a rounder
form or rounded edges to enhance ergonomic comfort and facilitate
a more pleasant tossing experience. These suggestions align with
prior work by Karlesky and Isbister, as well as Nyqvist [21, 36]. Ad-
ditionally, feedback suggested improving the robot’s light visibility
by moving the light source from the bottom to the top of the robot.

Stability and addition of customizable elements were also identi-
fied as areas for improvement. Participants noted that the robots
should have increased weight or an improved weighting system
to maintain balance, especially for interactions that involve alter-
ing the robot’s position on the tracking mat, typically achieved
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Figure 16: Suggested physical design for robots intended for fidgeting. A shows a rubbery sphere being attached to the top of
the robot, while B shows a sphere that contains all the mechanisms necessary inside.

by flicking or pushing. Furthermore, there was a strong interest
in customization, with ideas ranging from ’sensory stickers’ (P11)
to ’cat ears’ (P17) and ’googly eyes’ (P5, P17, P3). P18 proposed a
unique concept of attaching a removable and replaceable stress ball
on top of the robots for stress relief and stability enhancement, as
shown in Figure 16 A. P13 suggested a spherical body for the robots
with a gyroscopic servo at the center of the sphere and a vibration
servo at the top of the sphere shown in Figure 16 B. Participants
also expressed a desire for more color options, with P17 and P3
showing interest in colors beyond the standard white, indicating a
preference for robots that can reflect users’ personal styles.

4.9 Other Potential Applications of Interacting
with Swarm Robots

During the design workshops, participants conveyed that their in-
teractions with swarm robots had a calming effect. This experience
prompted them to contemplate scenarios where engaging with
these robots could become a focal activity, rather than a secondary
one complementing a primary task. The interactions were found
to be so enjoyable that discussions about wanting to interact with
the robots as a primary task emerged naturally in every design
workshop. These insights compelled us to survey participants at
the end of the evaluation workshops about other potential uses for
swarm robot interactions and their preferred number of robots for
such interactions. Additionally, inspired by Kim et al.’s observation
that robots could proactively initiate interactions [25], we included
questions in the survey to gauge participants’ interest in this feature
and to identify situations where it would be beneficial for swarm
robots to autonomously initiate interactions.

4.9.1 Soothing or Relaxation. The uniformity of movement, unique
to interactions with robots, stood out for participants and was fre-
quently described as "calming" (P14) or "soothing" (P18), with the
robots’ coordinated and predictable motions as well as the white
noise created by the motors providing a sense of relaxation. Conse-
quently, participants envisioned using robot interactions for relax-
ation, such as "playing and de-stressing after a day" (P8). P17 further

emphasized this potential, noting the relaxing effect of slower move-
ments: "If the robots are slower, it can be good to relax since you
can just look at the patterns made by the robots." P5 and P15 saw
potential in swarm robots for "meditation" and "meditative pur-
poses like soothing or de-stressing," respectively. Some participants
commented that they could use the interactions in more severe
situations like "getting through an anxiety attack" (P18). P6 found
the interactions to be "a nice distraction and a rhythm or pattern
seems to make you feel like you are in control still" and therefore
could be used as a distraction if they were "feeling anxious or pan-
icky". Interestingly, the preferred number of robots for interactions
aimed at soothing purposes was higher than for fidgeting, with
most participants favoring at least four robots (Figure 17).

0 2 4 6 8

1 robot only
1-2 robots 
2-3 robots 
4-5 robots
6 robots 
As many robots 
as possible

Figure 17: Participants’ preferred number of robots for inter-
actions meant for soothing purposes.

4.9.2 Means of Intervention. The survey revealed substantial in-
terest in the robots’ potential to initiate interactions as a means of
intervention in a variety of scenarios. Five out of eight participants
expressed interest in the robots initiating interactions to intervene
in situations such as "panic attacks or self-destructive behavior
like doom scrolling" (P15). P3 recognized the potential for robots
to detect and respond to "anxious behaviors" or to vocal expres-
sions of distress. P12 saw the robots acting as reminders to move,
especially for individuals who have been sedentary for extended
periods during work. However, not all participants were in favor of
such proactive interactions. P17 had concerns about privacy, while
P14 expressed a general mistrust of technology. P8 preferred to
self-manage the use of fidgeting tools, stating, "I feel I’m good at
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knowing when [and] what I need for fidgets." While the prospect of
robots autonomously initiating interventions was met with interest
and perceived as beneficial by many participants, it also raised valid
concerns about privacy and autonomy, highlighting the need for
careful consideration and customization in their implementation.

5 LIMITATIONS & FUTUREWORK
For the current study, we chose to use a specific robot platform, Sony
Toio robots, for its simplicity. However, this platform also presents
several technical limitations for fidgeting in terms of its features and
design. First, the shape of the robots was not perceived as ideal for
fidgeting indicating that ergonomics and design could be improved
to enhance the fidgeting experience. The robots also lacked an
internal motor for vibration prompting the need to rely instead
on wheel movement to create haptic feedback. This forced the
participants to hold the robots in a manner that would not obstruct
wheel motion, rather than in their preferred way. Additionally,
the position tracking of the robots was constrained by the size
and shape of the accompanying mat, limiting their movement and
interaction space.

Concerns were also raised relating to the sensitivity of the robots’
triggers. Instances were noted where taps that were too light or
movements that were too rapid resulted in non-detection, specifi-
cally for interactions where one of the robots was used to control
other robots, pointing to the need for enhanced responsiveness in
future robot iterations.

Moreover, the process of setting up, turning on the robots, and
placing the mat on a suitable surface, was found to be cumbersome.
This could be seen as a possible deterrent that keeps potential users
from utilizing these robots in their daily routines due to the per-
ceived hassle. Conversely, the use of a single robot for rudimentary
interactions, such as shaking or tossing, was acknowledged as suf-
ficiently portable, suggesting its adaptability in various scenarios.

In our co-design study, we focused solely on adults with ADHD,
gaining valuable insights into their specific needs and preferences.
However, the small sample size of our study limits the general-
izability of the results to all adults with ADHD across different
demographics and especially to older adults as most of the par-
ticipants were between the ages of 18-31. Future research should
also aim to contrast the needs and preferences of adults with and
without ADHD to enhance our understanding of how to optimally
design swarm robot-based fidgeting tools for both groups.

Looking ahead, there are several promising directions for future
exploration. One intriguing direction is examining the potential
of swarm-robot-based fidgeting to enhance previously known fid-
geting benefits like creativity [21], concentration [3], and emotion
regulation [46]. It would be worthwhile to compare the impact of
these advanced, tailored swarm-robot fidget devices against the
effectiveness of standard, one-size-fits-all fidget tools. Building on
our co-design exploration, conducting longer-term studies to inves-
tigate the long-term efficacy and usability of swarm-robot-based
fidgeting devices among individuals with ADHD will be beneficial.

Another important area for future research is identifying the
optimal conditions for robots to autonomously initiate a fidgeting
interaction. Given that participants have shown interest in using
robots for relaxation, it may be particularly beneficial for robots

to initiate interactions during moments of distress. Additionally, it
will be interesting to explore the preferred modalities of interac-
tion initiation (e.g., visually via lights or movements like spinning,
aurally via sound, or haptically through physical touch) and how
these preferences vary among adults with ADHD.

6 CONCLUSION
Through the co-design study, we demonstrated that there is a great
diversity in the perceptions and preferences of adults with ADHD in
relation to fidgeting with swarm robots. The diversity observed in
participants’ preferences demonstrated the need for customizability
of fidgeting interactions, to allow individuals to tailor their inter-
actions according to personal preferences and environmental con-
straints. Moreover, we identified the essential components needed
to create satisfying fidgeting interactions with swarm robots. The
study also highlighted areas for potential hardware improvements
of the robots. Beyond the primary scope of fidgeting, we discovered
other potential uses for swarm robots, as relaxation aids or interven-
tions in certain scenarios. These findings demonstrate the potential
of swarm robots for use as assistive technologies for adults with
ADHD. We hope these findings can inspire future research in the
area of assistive technologies utilizing swarm robots.
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