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ABSTRACT

Tactile effects can enhance user experience of multimedia content.
However, generating appropriate tactile stimuli without any human
intervention remains a challenge. While visual or audio information
has been used to automatically generate tactile effects, utilizing
cross-modal information may further improve the spatiotemporal
synchronization and user experience of the tactile effects. In this
paper, we present a pipeline for automatic generation of vibrotactile
effects through the extraction of both the visual and audio features
from a video. Two neural network models are used to extract the
diegetic audio content, and localize a sounding object in the scene.
These models are then used to determine the spatial distribution
and the intensity of the tactile effects. To evaluate the performance
of our method, we conducted a user study to compare the videos
with tactile effects generated by our method to both the original
videos without any tactile stimuli and videos with tactile effects gen-
erated based on visual features only. The study results demonstrate
that our cross-modal method creates tactile effects with better spa-
tiotemporal synchronization than the existing visual-based method
and provides a more immersive user experience.
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1 INTRODUCTION

Vibrotactile feedback is effective in making multimedia content
more expressive, vibrant, and realistic [6]. 4D movies are one of the
successful attempts to integrate tactile feedback for an improved
visual-audio content delivery [9, 26]. In this context, it is very im-
portant to present tactile stimuli that are aligned with the visual
and auditory stimuli as well as their semantics [6]. Any conflict be-
tween the sensory cues will compromise the overall user experience.
Thus, a key challenge for spatial tactile effects is the spatiotemporal
synchronization between the audio-visual content and vibration
patterns rendered on a tactile display [6].

To create the haptic content for vibrotactile displays, researchers
have developed many manual authoring tools [4, 20, 31]. However,
manual editing is a laborious process especially for long videos.
To address this, researchers have explored various ways to auto-
matically generate tactile effects. Visual saliency calculated from
the object’s motion is used to generate spatial tactile content by
Kim et al. [17]. This method performs well for simple scenes but
due to its lack of understanding cross-modal information, complex
scenes with rich audio and visual events cannot be translated in
the most meaningful way. For instance, generating temporally syn-
chronized tactile effects for a moving truck that honks sporadically
is impossible with visual features alone. Audio signals without any
visual information (e.g., music or special sound effects) have also
been translated to tactile stimuli [5, 22]. However, the resulting hap-
tic content is not spatially aligned with the visual content. While
spatial audio channel could be used to generate spatial haptic con-
tent, many online videos (e.g., YouTube) do not have the necessary
spatial audio information.

This work focuses on automatically generating the haptic con-
tent for a spatial vibrotactile display based on the audiovisual infor-
mation from a video. Contrary to previous work which only utilized
either the visual or audio channel, we use cross-modal information
from both channels to improve the spatiotemporal synchronization
between the tactile stimuli and the audiovisual content. This design
decision is supposed to improve the user experience compared to
when solely relying on a single modality. In order to extract audio
and visual features, we first use neural networks to pull out diegetic
audio signals (i.e., sounds from objects that are visible or can be
implied from the scene) [28] from the sound track. The diegetic
sound is then used to decide the intensities of the tactile stimuli
and localize the sound source within the scene [36], which is then
mapped to a spatial heatmap of the tactile effects.
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In order to evaluate the performance and user experience of
our cross-modal approach, we conducted a user study to compare
videos with tactile effects from our method against videos with-
out any tactile stimuli and videos with tactile stimuli generated
by a modified version of the visual saliency-based approach from
prior work [18]. For our study, we used a custom designed tactile
display, which consists of an array of haptic actuators mounted
on a backrest of a chair, to display the tactile stimuli to the back
of the participants. To evaluate the user experience, we measured
the Sensory, Distraction, Novelty and Immersion on a Likert Scale.
Videos downloaded from YouTube were used for the study. Based on
the study results, we discuss advantages of extracting cross-modal
information for automatic generation of tactile stimuli compared
to using visual channel alone. The novelty and technical contribu-
tion of this paper center around its use of both audio and visual
content to automatically generate spatial tactile effects. While we
used algorithms from prior work [28, 36] for parts of our pipeline,
none to our knowledge have developed a complete pipeline that
utilizes both the audio and visual information nor compared its
performance to visual-only algorithms.

2 RELATED WORK
2.1 Haptics to Enhance Multimedia Experience

Researchers have investigated the importance of haptics for im-
proving the multimedia experience. Both kinesthetic [2, 27] and
tactile [20, 23, 31] haptic effects can complement the audiovisual
delivery. Tactile effects can be displayed by attaching vibrotactile
actuators to different fixtures including hand-held game controller
[35], gloves [20], mobile phone [12], and jackets [23]. Tactile effects
have been used for various purposes such as making more realistic
physical contact [3], enhancing audio effects [33], and simulating
motion [11]. An array of tactors is commonly used to display tac-
tile effects [6], which can present spatial correspondence between
visual information and tactile stimuli. Israr et al. [11] and Kim et al.
[19] further discussed the design space of tactile effects with the
spatial correspondence. Compared with traditional plain audiovi-
sual content, enhanced multimedia content with physical output
can help users perceive information in a more immersive way [25].
Our work focuses on generating haptic patterns for tactile arrays
as such devices are being increasingly used in commercial theaters
and are more affordable than kinesthetic devices.

2.2 Authoring Haptic Effects

One of the key requirements for generating haptic effects is the syn-
chronization with the audiovisual content. There has been mainly
three ways to achieve this: capturing physical sensor data during
filming [7], having haptic content designers manually add haptic
features [31, 37], and automatically generating haptic effects based
on the video or audio content [17, 21, 22].

2.2.1 Sensor-based Authoring. The most comprehensive approach
is to capture the exact forces and motion by placing the appropriate
sensors directly in the scene. For instance, piezo-electric sensors
and accelerometers have been used to monitor contact forces [30]
and motion profiles [1]. However, capturing these physical sensor
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data can dramatically increase the setup time and the overall cost
as additional technicians and equipment are required.

2.2.2 Manual Authoring. Another approach involves designers
manually creating haptic content. To support this, researchers have
developed various graphical editing tools that allow designers to
set the amplitude of a specific actuator [20, 31] or only require the
description of what the user should feel [7, 37]. Although manual
editing tools can be very effective for a small number of videos, it
is not a scalable solution.

2.2.3 Automatic Authoring. More recently, researchers have ex-
plored automatic generation of haptic effects. By extraction of spe-
cific features (i.e. motion [17]), these automatic generation meth-
ods can translate video content to haptic effects. However, since
these methods only rely on visual features, they can often generate
contextually inapt tactile effects. For example, these methods will
always generate strong tactile stimuli whenever there is a large ob-
ject moving across the scene. Audio signals have also been used to
generate haptic effects by analyzing their frequency characteristics
[5] or perception-level intensity [22]. However, simply translating
an audio signal to a haptic signal alone without understanding its
semantic correspondence with visual content could potentially lead
to inadequate haptic effects. For example, directly translating an
off-screen narrator’s voice in a video to spatially distributed tactile
stimulus can be confusing to the audience.

Building an end-to-end pipeline that can automatically generate
spatial vibrotactile effects to a large number of videos is still an
unsolved challenge. We will demonstrate that utilizing cross-modal
information instead of single-modal information can be a significant
step toward addressing this problem.

3 FRAMEWORK FOR AUTOMATICALLY
GENERATING SPATIAL TACTILE EFFECTS

In this section, we provide an overview of our framework to auto-
matically generate spatial tactile effects. Our pipeline utilizes both
the visual and the audio signals to determine the spatial distribution
and the intensities of the tactile effects.

As shown in Fig. 1, the audiovisual content is first separated
into the visual and audio content. Since the relation between the
nondiegetic sounds (i.e., the sound that is not visible on the screen or
whose source cannot be implied by action of the film) and the hap-
tic signals is not well-understood [8], we extract only the diegetic
sounds from the audio content and discard the non-diegetic audio
information. With the recent progress in neural-network-based
methods, many researchers have applied neural networks to sepa-
rate diegetic and non-diegetic audio channel. For our pipeline, we
used the most relevant on/off screen speaker audio separation algo-
rithm developed by Owens et al. [28]. The outputs of our pipeline
are spatial tactile effects that consist of the spatial distribution and
the intensities of the tactile effects. In order to obtain the spatial
distribution, we calculate the location of the sound source in the
video using an audio-guided visual attention mechanism [36]. This
method creates a heatmap representing the probability distribu-
tion of the sound source within the scene. Only the diegetic audio
obtained from the audio separation algorithm is then used as the
input data for this process since non-diegetic audio is not visually
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Figure 1: Automatic tactile effects generation pipeline uses
both visual and audio features to separate diegetic audio sig-
nal and determine the location of the tactile stimuli. The
intensity of the generated haptic effects is only decided by
the diegetic audio signals.

present in the scene. The amplitudes from the diegetic audio signal
are converted to the intensities of the tactile effects while satisfying
the frequency response of the actuator. Finally, we combined the
two components (i.e., spatial distribution and intensities) to gen-
erate tactile effects at the computed locations with the computed
intensities.

3.1 Audio Source Separation

Audio source separation is a necessary step before translating au-
diovisual content to meaningful haptic mappings. There are mainly
two types of audio in a video: diegetic and non-diegetic sounds.
Diegetic sounds originate from the objects on the screen, like car
engine, chainsaw or music instrument while non-diegetic sounds
include background music and narrator’s voice. Since haptic effects
are mostly used to enhance physical events happening within the
scenes [8], it is necessary to filter out non-diegetic sounds from the
mixed audio channel.

Among state-of-the-art audio source separation techniques, the
model developed by Owens et al. [28] is the most relevant for our
application since it allows us to separate diegetic and non-diegetic
audio signals. Therefore, we adopted their open-sourced multi-
sensory net and u-net models [29] as building blocks to separate
non-diegetic audio signals and only use the diegetic sound in our
framework (Fig. 1). Although Owens et al. [28] only demonstrated
a speech separation use case with an on-screen speaker and an off-
screen human speaker, we also found it effective in separating the
audio stream from on-screen non-human sounding objects and an
off-screen narrator. Next in Sec. 3.2, we will translate the obtained
diegetic audio signals into spatial tactile mappings by locating the
sounding object.

3.2 Sound Source Localization

Using the extracted audiovisual content without the non-diegetic
audio component, we generate the spatial tactile channel. As men-
tioned in Sec. 3, our framework obtains the distribution of the spatial
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Figure 2: The pipeline for sound source localization. The vi-
sual features are extracted through a VGG-19 network [34]
while the audio segment is processed by a VGG-like network
[10]. The audio-guided visual attention is then used to gener-
ate a heatmap showing the location of the sounding object.
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haptic channel by localizing the sounding object in the scene. In
this section, we describe the methods to achieve the spatial and
temporal sound event localization.

3.2.1 Our Implementation based on the State-of-the-Art. There are
many existing approaches to the sound event localization problem.
Among all the sound event localization approaches, we follow the
method developed by Tian et al. [36] for our automatic haptic effects
generation pipeline. Their model [36] is both open-sourced and is
capable of recognizing various sounding objects in the audiovisual
scene. This model was originally developed for audio-visual event
localization so it consists of five major modules including visual
and audio features extraction, audio-guided visual attention, tem-
poral modeling, multimodal fusion, and temporal labeling. Among
the five major modules of the pipeline developed by Tian et al.,
the visual and audio feature extraction module preprocesses the
audiovisual content and further feeds the intermediate results to
the other modules. The audio-guided visual attention module gen-
erates the sound localization heatmap using the extracted visual
and audio features. Thus, we modified and used these two modules
to locate the sounding object within a video.

As shown in Fig. 2, three neural networks were utilized in this
step. A VGG-19 network [34] pre-trained on ImageNet was used
to extract visual features. The original model by Tian et al. [36]
sampled 16 RGB video frames from a 1 second video clip and did
a global average pooling over the 16 extracted pool5 features to
generate one 512 X 7 X 7-D feature map. This will result in the
same generated heatmap for the entire 1 second video clip which
does not meet our requirement for dynamic response of haptic
effects. Thus, we modified the visual feature extraction process so
that each frame of a video clip is sent to the VGG-19 network to
extract its pool5 feature without averaging the other frames. This
will generate a sound source localization map for each frame in a
video clip. Then, a VGG-like network [10] was used to extract a
128-D audio representation for each 1 second audio segment. Since
the location of the sounding source is more sensitive to the visual
features than the audio features, we used each individual frame as
the visual input and 1 second segment as the audio input to reduce
noise. A video clip longer than 1 second was separated into multiple
1 second chunks and the sound source localization was conducted
on each of the chunk.
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The resulting sound localization heatmap is shown in Fig. 2.
The audio-guided visual attention method will only highlight the
sound source location (e.g., engine of the car) instead of the entire
sounding object (e.g., car). Several random background regions will
be attended by this model if there are no audio-visual events hap-
pening. However, the performance of our method will not degrade
due to this phenomenon because the intensities of our tactile ef-
fects translated from audio signal intensities will also be very weak,
which will not distract users.

Since sound source localization is also a well-established research
topic in the computer vision community with many working mod-
els, we mainly trimmed and modified the most relevant model [36]
as we discussed above to utilize it as a building block for our au-
tomatic tactile effects generation pipeline. This sound localizing
module will be fed with diegetic audio that we get from the au-
dio separation module along with the visual frames to generate a
localization heatmap of the sounding object at each frame.

3.2.2 Limitations. There are some limitations for the current audio-
guided visual attention model [36]. Currently, it only works for 28
events (e.g., Racing car, Dog barking, Chainsaw, etc) due to its
relatively small training dataset (4143 videos). However, the model
itself is generalizable and can be extended to a larger number of
event categories given a larger training dataset. Another limitation
is that, when there are multiple sounding objects from the same
category in the scene, the current model will have difficulties finding
the correct sound source. For example, a race car in the street
generates much more sound than an electric car. However, since any
types of cars will be classified as the car object by this method, both
cars may be highlighted in the sound source localization heatmap.
This will lead to a mismatch between spatial haptic effects converted
from the generated heatmap and the audiovisual content. However,
selecting the correct sounding object among other objects from the
same category is also a difficult task for humans if there is only a
mono audio channel. The potential effects of this limitation will
also be discussed in Sec. 4.

3.3 Spatial Tactile Effects

In this section, we describe our spatial tactile stimuli generation
pipeline based on the diegetic audio stream obtained from the audio
source separation method described in Sec. 3.1 and the sound source
localization heatmap generated through a set of neural networks
(Sec. 3.2). To compute the intensities of the tactile effects, we use
the amplitudes of the diegetic audio signal whereas the heatmap
from the sound source localization is used to determine the spatial
distribution of the tactile stimuli.

3.3.1 Intensity. AsFig.3 shows, the intensities of the haptic signals
are calculated from the amplitudes of the diegetic audio stream.
Since haptic actuators have a limited frequency response range, the
audio signals are first downsampled with a sampling rate slightly
higher than 2F according to the Nyquist Theorem, where Fs is
the resonant frequency of the haptic actuator. A commonly used
downsampling method is to sample one data point in every n data
points in an audio stream s;. However, this downsampling method
overemphasizes the low-frequency components in the audio stream
s1. In some cases, there can be a significant difference between the
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downsampled waveform and the original audio waveform leading to
a mismatch between the haptic and audio signals that compromises
the user experience. Thus, this method is not adopted in our pipeline.
Our system downsamples using a "running sum" method [24] which
can retain the characteristics of the audio signals. Assuming the
original audio stream s; has a sampling rate of r; and the target
downsampled data stream s, has a sampling rate of r, we need
to convert every n = ry/r signals from s; into one data point in
s2. We first calculate the sum of the absolute amplitude of every n
signals in s;, thus obtaining a data stream s;” that has a sampling
rate of rp. We further add a minus sign to every other data point
in 517 so that we get a data stream sp with a waveform similar to
s1 as Fig. 3 depicts. We can observe that although there are minor
differences between the original audio stream and downsampled
data stream, the overall waveform shape is maintained.

3.3.2  Spatial Distribution Mapping. The distribution of the spa-
tial haptic effects is determined by the sound source localization
heatmap. Since this heatmap is a probability distribution of the
sound sources rather than an audio intensity map, darker areas
in the heatmap do not indicate weaker audio signals in the visual
scene. Thus, instead of providing weaker tactile vibrations propor-
tional to the heatmap values in the darker areas, we filter out these
dark areas and do not render any haptic signals at those regions.
To do this, we first carry out a percentile contrast stretching on
the sound source localization heatmap (Fig. 3) with 1st and 99th
percentile in the histogram converted into 0 and 255 while other
pixels remapped to 0 to 255. This filtering step is commonly used
in the image processing pipeline to boost the image contrast [32].
Next, we downsample the contrast stretched sound source localiza-
tion heatmap to a 3 x 3 tactile map which reflects the number of
actuators in our vibrotactile device. A moving average calculation
is used to remove the random noise in the tactile map, which is
caused by inaccuracy of the sound localization model. Specifically,
My = 0.95%My_1+0.05% Mpe,, where M, and M,_1 is the filtered
tactile map at time step n and n — 1, My, is the incoming tactile
map with noise. Another contrast stretching is further carried out
for the created tactile mapping for the same reason as mentioned
above. To reduce the effects of the low probability regions, we apply
a threshold similar to the prior work [18]. Tactile map pixels with
a value lower than a certain threshold (e.g., 150 out of 255) were
removed. A higher threshold can reduce noise although sacrific-
ing the tactile mappings’ ability to show minor tactile effects. The
threshold was decided by our empirical tests.

The heatmap from the sound source localization can often out-
put noise. As shown in Fig. 3, the bright region on the left of the
heatmap is due to noise and the bright region on the right is the
actual sounding object. However, this noise can be detected and
removed by comparing with the heatmaps from the neighbour-
ing time steps. As shown in Fig. 3, the distribution of the bright
region in the heatmap is maintained after the contrast stretching
and downsampling steps. After the moving average step, the bright
pixel values on the left side of the spatial tactile mapping is signifi-
cantly reduced. This is because other sound localization heatmaps
(not shown in Fig. 3) generated at the neighbouring time steps do
not contain such bright regions on the left side of the mapping.
Since we apply a weight of 0.05 to the new tactile map as mentioned
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Figure 3: The generation pipeline builds the spatial tactile mapping by calculating both the spatial distribution and the in-
tensities of the tactile stimuli. Amplitudes of audio stream after downsampling is translated to the intensities of the tactile
stimuli. The sound source localization heatmap is used to determine the spatial distribution of the haptic effects.

Figure 4: Spatial tactile mappings generated for video ex-
amples downloaded from YouTube. Whiter regions indicate
stronger tactile amplitudes.

above, the noise on a single frame has minor effect on the filtered
tactile map. Thus, these pixels are construed as random noise gen-
erated by the sound source localization algorithm and removed by
the moving average step.

Although the moving average mitigates some harmful noise, it
also reduces its capability to capture fast moving objects. If the
pipeline is used to generate spatial tactile effects for body parts
with lower spatial tactile perception resolution (e.g., torso or arm), a
longer time window can be used to remove the random noise more
effectively. Even if the objects slightly change their positions in the
video, they can still be presented by the same pixel in the spatial
tactile mapping due to its lower resolution. On the other hand, if
the spatial tactile stimuli is used for body parts with a higher spatial
tactile sensitivity (e.g., hand or fingertip), the moving average step
should assign more weights to the current video frame so that the
generated spatial tactile mapping can better match the sounding
object. Since the current vibrotactile display outputs tactile effects
on user’s back which has a low spatial tactile sensitivity, we use a
longer time window in the moving average step.

After both the audio and visual components are processed, the
amplitudes of the audio signals are mapped to the control voltages
of each haptic actuator according to the spatial tactile map. Since
the intensities of haptic effects are designed to be proportional to
the amplitudes of the audio signals, the last step of the pipeline is to
normalize the root mean square (RMS) of tactile stimuli intensities
to the intensities of the audio signals. Each individual haptic actua-
tor’s intensity I;, proportional to the control voltage, is decided by

T; = Amp/ Z{.C:l T; where T; is the value of the corresponding tactile
map pixel, Amp is the amplitude of the audio signal and k is the
number of the tactile pixels.

Examples of the final spatial tactile mappings created by our
framework are shown in Fig. 4. More details are available in the
supplemental materials. Videos examples were downloaded from
YouTube. Note that there are no tactile signals in one of the screen-
shots due to its low audio signal intensity.

3.4 Tactile Display

To evaluate the performance of our spatial tactile effects generation
pipeline, we developed a 3 X 3 vibrotactile array to render the tactile
stimuli.

3.4.1 Location. For 4D movies or other immersive media with a
haptic channel, a commonly used configuration is to apply the
vibrotactile display to people’s backs, since users are often seated
and do not need to dawn and doff a device if it is integrated into a
chair. The back also provides a relatively flat, large area surface for
spatial tactile feedback, which is needed given the relatively low
tactile spatial acuity outside the hands, face and tongue [14]. Thus,
we adopt a similar setup [18, 23] by developing a 2-D vibrotactile
array inside a chair backrest cushion (as shown in Fig. 5(a).) resting
against user’s back to demonstrate our automatic spatial tactile
effects generation results.

3.4.2 Hardware Design. The design requirements of such a vibro-
tactile display include sufficient tactile stimuli, minimal interference
between different haptic actuators and low distracting audio noise.
To generate sufficient vibration intensities, we utilize 30W haptic
actuators as Fig. 5(a) depicts (Dayton Audio TT25-16 PUCK Tactile
Transducer Mini Bass Shaker) in our setup. This haptic actuator
can provide sufficient stimulation to the user’s back which has
lower tactile sensitivity than other areas commonly used for haptic
effects (e.g., hand or arm). To reduce the interference among haptic
actuators, our haptic actuators are attached to a lumbar support
back cushion with high-density memory foam which provides a
good balance between firmness and softness. While too much soft-
ness will absorb actuator vibrations and weaken the haptic effects,
too much firmness will result in a cross-talk between the different
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Figure 5: (a) Chair cushion with haptic actuators inside as
a vibrotactile display. (b) Diagram of the tactile rendering
hardware system.

haptic actuators due to longer vibration propagation distance, thus
jeopardizing the localization of spatial haptic effects. Furthermore,
while this actuator is essentially a voice coil, it is custom designed
as a tactile transducer to minimize any distracting audio effects
accompanied with the vibrations.

The number of haptic actuators and array size are also impor-
tant design considerations for a vibrotactile display. Prior work
[15] demonstrated that a user’s back has a high tactile localization
accuracy rate with a 3 x 3 array of vibrotactile actuators placed 60
mm apart. Same configuration has been used to enhance the video
viewing experience [17]. Thus, we also arrange our haptic actuators
in a 3 X 3 array. Since our haptic actuators have a diameter of 70
mm, we placed them with a 10.5 cm inter-tactor spacing to avoid
cross talk.

Response time is another consideration for the vibrotactile dis-
play. According to Kim [16], latencies shorter than the time to play
a single visual frame is in an acceptable range. Since our actuator
has a frequency response range of 20 - 80 Hz which corresponds
to a rise time lower than 6 ms, it is sufficient to synchronize with
videos with 30 frames per second (fps) frame rate (33 ms per frame).

To control the vibrotactile display, we designed and fabricated a
driver circuit. A medium-power motor driver (Pololu MAX14870)
with a peak current of 1.7 A was used for each tactile transducer. A
microcontroller (Teensy 3.6) was used to connect the computer and
the motor drivers for tactile effects processing. Since our vibrotactile
display is installed on a chair cushion rather than used as a wearable
device on body (e.g., hand or arm), we did not strictly optimize the
form factor of our electronic components. The primary goal of this
prototype is to demonstrate the feasibility and performance of our
automatic haptic effects generation pipeline.

3.4.3 Tactile Rendering Process. We developed a C# program to
render the spatial tactile mappings that we obtained in Sec. 3.3 with
our vibrotactile display. Since our pipeline takes approximately 5
minutes to process a 10-second video clip, we computed and saved
the required tactile signals in the microcontroller offline. Up to
1000 seconds of tactile signals can be pre-loaded to our microcon-
troller (Teensy 3.6). When the user begins watching a video, a start
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signal with the current video identifier is sent to the microcon-
troller (Fig. 5(b)) which then triggers the haptic actuators with the
pre-computed signals. A signal is sent from the CPU to the mi-
crocontroller every 100 ms to re-synchronize (Fig. 5(b)) these two
subsystems. Our haptic actuators are low-noise voice coils which
have a much shorter rising time of about 4 ms, considering a fre-
quency response of 20 - 80 Hz. Since the haptic latency is within an
acceptable range [16], we did not intentionally send driving signals
ahead of time to compensate for the latency. This is in contrast to
some prior work [18, 20] which used eccentric rotating mass (ERM)
vibration motors for tactile rendering. Due to the large latency time
of these actuators, the tactile stimuli needs to be sent ahead of time
to keep a good synchronization with the audiovisual content.

4 USER EVALUATION OF TACTILE EFFECTS
BASED ON CROSS-MODAL FEATURES

In this section, we describe our user study on evaluating the perfor-
mance of the tactile effects that were automatically generated from
cross-modal information as described in the previous sections. To
test this, we compare our cross-modality method with the state-of-
the-art method that utilizes only the visual channel [18]. We also
compare videos from these methods to a baseline condition without
any tactile effects. Thus, three conditions were evaluated in this
user study: plain videos without any tactile effects, videos from the
modified version of saliency-driven visual-based method [17] and
videos from our method based on cross-modal features.

4.1 Hypotheses

H1: Our cross-modal method and the saliency-driven method will
have similar performance to spatially synchronize the tactile stimuli
with the audiovisual content

The saliency-driven method [18] detects motions of objects since
the visual saliency is closely related to the spatial and temporal
changes of the visual features. In comparison, our method computes
the location of the sounding object in the scene using the method
developed by Tian et al. [36]. Therefore, if both of the methods
are implemented correctly, they should have comparable spatial
synchronization performance for most scenes.

H2: Our cross-modal method will yield better temporal synchro-
nization between the tactile stimuli and the audiovisual content than
the saliency-driven method.

By taking both audio and visual features into consideration, our
cross-modal method should be better in detecting the start of an
event while the visual saliency sometimes can be misleading.

4.2 Method

The main objective of this study is to compare the different types
of tactile effects: no tactile effects, tactile effects based on visual
saliency-driven method, and tactile effects from our cross-modal
method. In order to see how these compare across different types of
videos, we presented to the participants eight videos with different
scene complexity such as the number of audiovisual events and the
number of objects in the scene.

4.2.1 Independent Variables. Three conditions were presented for
each video: (1) plain video without any tactile effects, (2) tactile
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Figure 6: Participants sat against a chair cushion with vi-
brotactile actuators during the study. The vibrotactile de-
vice provided tactile stimuli that were synchronized to the
shown videos.

effects generated by the modified saliency-driven method [18], and
(3) our cross-modal method. Plain videos were used as the baseline
condition to evaluate how much the spatial tactile effects augment
the user experience. To provide a comparison with the state-of-the-
art visual-based automatic tactile effects generation pipeline, the
modified saliency-driven method [18] was chosen as the compari-
son condition.

The saliency-driven method [18] firstly builds a spatial saliency
map for each frame by finding the visually apparent features. It also
constructs a temporal saliency map by looking at frame to frame
difference to emphasize the dynamic motion of the objects. How-
ever, the saliency-driven method [18] did not consider foreground
motion versus background motion. If there are any abrupt camera
movements in the video, it cannot avoid assigning tactile effects to
the moving background even though the foreground objects (e.g.
car in a racing game) should be the main focal point of the tactile
rendering. This limitation will compromise the performance of the
visual-only method in many videos. Thus. in our implementation
of the saliency-driven tactile generation pipeline, we modified the
method used by Kim et al. by adopting a neural-network-based
method [13] for detecting visual saliency. The RMS of the tactile
stimuli generated by the modified saliency-driven method and our
method are also normalized for a fairer comparison.

4.2.2  Video Content. We downloaded and used eight video clips
from YouTube for the experiment. See Table 1 for a brief summary
of each video. The complexity of the scene such as the number of
audiovisual events and the parameters of the objects in the scene
(e.g., number, size, and motion of objects) are major factors that
can influence the quality of the generated tactile stimuli. Thus, we
selected example videos for the user study which covered various
combinations of these factors to more thoroughly evaluate different
tactile effects generation methods. All the video clips are included
in the supplemental materials.

4.2.3 Study Setup. As shown in Fig. 6, a 24 inch LCD display was
used to present the videos while a noise cancelling headphone
(Audio-Technica ATH-ANC?7b) was used to deliver the audio chan-
nel as well as preventing participants from hearing the tactile trans-
ducer noises. Participants were seated approximately 65 cm from
the display. A chair cushion was equipped with the 3 X 3 tactile
transducers inside as shown in Fig. 5(a), which was used to pro-
vide the tactile effects to the participant’s back. Participants were
asked to refrain from wearing thick or multiple layers of clothing
to ensure adequate delivery of the tactile effects.
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4.2.4  Participants. We recruited 20 participants (12 M, 8 F) from
our institution. Ages ranged from 21 to 44 (M = 25.8, SD = 5.1).
Participants were compensated 15 USD for their participation, and
the experiment generally lasted for an average of 40 minutes.

4.2.5 Design and Procedure. We used a one-factor within-subject
design where the independent variable was the tactile effects pre-
sented throughout a video. Every participant experienced 3 (tactile
effects) X8 (videos) = 24 trials in a random order. A practice session
demonstrating the capabilities of the system was carried out before
the formal user study in order to reduce the "novelty effect" for the
participants. After every eight trials, participants were given two
minute long breaks.

After each trial, participants filled out a modified version of the
quality of experience questionnaire (See Table 2). We designed this
around the concept of Presence. Witmer and Singer [38] deter-
mined four factors for presence including (1) Control, (2) Sensory,
(3) Realism, and (4) Distraction. Since the participants passively
received the tactile effects, the "Control" category is not relevant
for this study. We also excluded the "Realism" item as our tactile
effects are designed to enhance the audiovisual experience which
does not necessarily have to replicate the real world. The "Sensory"
factor assesses how each modality is solicited in the experience
and the "Distraction” section was chosen to help to evaluate if our
tactile effects are distracting to the participants. Thus, these two
items were included in the questionnaire. We also added two addi-
tional items to the QoE questionnaire including the "Novelty" and
"Immersion” questions which are frequently used for evaluation of
tactile effects accompanied with multimedia [18, 20]. We developed
and asked a single question for each category as shown in Table 2.

For sessions with tactile effects, three additional questions were
added to the questionnaire to better understand whether the hap-
tic content matched the video spatially and temporally (Table 2).
All question use a 0-10 Likert Scale, where 10 represents a strong
agreement with the statement and 0 indicates strong disagreement.

4.2.6 Analysis. To examine the effects of the three conditions (No
tactile effect, tactile effects from the saliency-driven method, and
tactile effects based on cross-modal method), a Mauchly’s Test of
Sphericity followed by a one-way repeated measures ANOVA were
performed for Q1-Q4 in Table 2. If Mauchly’s Test of Sphericity is
violated, a Greenhouse-Geisser correction was used to calculate
the F and p values from ANOVA. Bonferroni-corrected post-hoc
tests were used to determine which pairs of means are significantly
different. For Q5-Q7, a paired t-test was conducted to compare the
tactile effects from the saliency-driven and cross-modality methods.

4.3 Results and Discussion

4.3.1 Overall Results and Trends. As shown in Fig. 7,our cross-
modal method significantly outperformed the saliency-driven method
for all the items in the QoE (Q1 - Q4, p < 0.001). The plain videos
were not statistically different from the videos based on saliency-
driven condition in terms of Sensory, Novelty and Immersion, while
the videos from saliency-driven method were significantly worse
than the plain videos in terms of Distraction (p < 0.001). Although
the videos from saliency-driven method were not rated higher than
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Table 1: Summary of the videos used for the user study

Movie M1 M2 M3 M4 M5 Mé M7 M3
Summary flying airplane moving truck train collision wall clock barking dog serene forest log sawing busy street
Length 10s 10s 10s 10s

Excerpt

0

R

i

10s 10s 20s

Table 2: Questionnaire used during the user study

NO. Factor Question Scale
o1 Sensory The multksensory-mteractlon of.the system helped with 0-10
its content delivery.
I can focus on the content without being distracted by the
Q2 | Distraction delivery methods (e.g. display, headphone and haptic 0-10
actuators).
Q3 Novelty 1 found this system interesting to use. 0-10
Q4 | Immersion I was immersed in the movie. 0-10
Q5 The vibrations were spatially matched with the movie. 0-10
Q6 The vibrations were temporarily matched with the movie. 0-10
It was straightforward to understand why there were
Q7 ou 0-10
vibrations.
‘ Plain videos Saliency-driven method Our method
10 T T T o
*k Kok K *ok
7.5 1 B L I I I i
o l
5 I "
o 1
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n
*K*k
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Figure 7: The aggregated results for all of the eight exam-
ples are shown. * p <0.05, ** p<0.01, *** p<0.001. The results
compare performance of the baseline condition (i.e., plain
videos without tactile effects), the modified saliency-driven
method [18] and our method for the seven questionnaire
items (Q1-Q7, See Table 2.)

the plain videos in aggregate, it was more effective in specific sce-
narios, which we will discuss in the following paragraphs.

Between the videos with tactile effects from our cross-modal
method and plain videos, there were significant differences (p <
0.01) in terms of the Sensory, Novelty and Immersion categories.
Our method was rated with a lower mean score than plain videos
in the Distraction item (Q2), albeit in a statistically insignificant
manner. The results demonstrate that for various examples we
tested, our method helped to improve user experience.

Tactile questions (Q5 - Q7) in Fig. 7 were aimed to evaluate
how well the tactile effects match the audiovisual content. The
overall results for eight videos in Fig. 7 showed that our cross-
modal method performs significantly better (p < 0.001) than the
modified saliency-driven method in terms of synchronizing with
the videos both spatially (Q5 in Table 2) and temporally (Q6 in Table
2). Participants also were able to better understand the rationale
behind the tactile effects (Q7 in Table 2).

4.3.2  In-depth Analysis of Each Video. For each video, we analyze
the performance of the three conditions. We apply the same analysis
as described in Sec. 4.3.1.

As we described in Sec. 1, M1 depicts a flying airplane which
is a challenging task for an algorithm as they need to track a
highly dynamic object. Although our method performed better
than the saliency-driven method in the aggregated results, Fig. 8(b)
M1 shows that our method was not significantly better than the
saliency-driven method. This is within our expectation since the
saliency-driven method is more specialized in tracking moving ob-
jects. This result confirms that our method based on cross-modality
information is as good as the visual-only method for localization.

M2 is an example with more temporally complex audiovisual
events (e.g. a truck honking). Results in Fig. 8(b) M2 show that our
method is significantly better (p < 0.01) than the saliency-driven
method for temporal synchronization (Q6), indicating that cross-
modality information is more effective than pure visual features in
temporal synchronization with the events in the scene. Although
our method obtained a higher mean score for spatial synchroniza-
tion (Q5), there was no statistical significant difference, which sug-
gest that both methods have comparable performance for spatially
tracking a large moving object.

M3 displayed a train running into a truck, a more complex event
than M2. It is important to generate the spatial tactile effects syn-
chronized with the collision event. Although the collision between
the two moving objects caused a crowd of dust which may po-
tentially be detected by a visual-only method, it is more accurate
to locate the collision with the audio information. This is demon-
strated in Fig. 8(b) M3 in which our method was significantly better
(p < 0.001) in all of the tactile-related questions (Q5-Q7). In addi-
tion, our method is rated significantly higher than the plain video
condition in terms of Sensory and Novelty(p < 0.05), and higher
than the saliency-driven method for Immersion (p < 0.05) as shown
in Fig. 8(a) M3. Results of M3 show that our cross-modal method is
able to temporally track an event with a higher precision than the
visual-based method.

M4 mainly tested the algorithms’ ability to generate spatial tac-
tile effects for discrete audiovisual events (i.e., clock ticking) in
a relatively tranquil scene. For all the items in QoE, our method
was rated significantly higher (p < 0.01) than the saliency-driven
method. In addition, our method significantly outperformed (p <
0.001) the saliency-driven method for all tactile-related questions
(Fig. 8(b)). This is mainly because our method leveraged the audio
features, thus tracking the ticks more accurately.

M5 evaluated the algorithms’ performance to both spatially and
temporally track multiple audiovisual events. As Fig. 8(a) depicts,
for the Sensory, Novelty and Immersion items, our method was
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Figure 8: (a) Subjective ratings for QoE. (b) Subjective ratings for tactile related questions. Standard error bar is shown for each
measurement. * p <0.05, ** p<0.01, *** p<0.001. The results compare performance of plain videos, the modified saliency-driven
method [18] and our method for the seven questionnaire items (Q1-Q7, See Table 2.)

significantly better (p < 0.001) than both the plain video condition
and the saliency-driven method. As shown in Fig. 8(b), our method
significantly outperformed (p < 0.001) the saliency-driven method
both for spatially and temporally matching tactile effects with the
audiovisual content. While the saliency-driven method generated a
more continuous tactile stimuli due to the movement of the dog in
the scene, our method took the audio features into account, thus
was able to emphasize the tactile effects on the more semantically
salient audiovisual events (e.g. dog barking).

M6 is a tranquil scene with a person walking in a serene win-
ter forest. It mainly tested whether the algorithms can generate
appropriate level of tactile effects when there are no significant
events in the scene. As shown in Fig. 8(a), both the plain video
condition and our method were significantly better (p < 0.01) than
the saliency-driven method for the Sensory, Distraction and Immer-
sion items. Our method generated tactile stimuli with intensities
proportional to the intensities of the audio. Thus, the amplitudes
of the tactile effects were minimal in a quiet scene. In contrast, the
saliency-driven method produced pronounced tactile effects.

M7 was used to compare the algorithms’ ability to analyze the
activities in the scene and render tactile stimuli for the proper
scene semantics. From Fig. 8(a) we can observe that in terms of the
Sensory and Novelty items, our method was significantly better
than the plain video condition (p < 0.01) and the saliency-driven
method (p < 0.05). Our method was also significantly better than
the saliency-driven method (p < 0.001) in terms of the temporal
synchronization. Since our method took the audio features into
account when generating tactile effects, it is able to stop right when
person stops sawing in the scene

M3 is an example with a much higher spatial complexity. From
Fig. 8(b), we can observe that the saliency-driven method signifi-
cantly outperformed (p < 0.05) our method when spatially matching
the tactile stimuli to the audiovisual content. Our method performed
less well in this example due to one of the limitations of our sound
source localization algorithm. If there are multiple sounding objects
from the same category (e.g. a fleet of cars) in the scene, our sound
source localization model is not smart enough to determine which

of the objects is the main sounding source. Thus, tactile effects can
be assigned to any one of the objects in the same category.

From the examples above, we can conclude that our cross-modal
method outperformed the saliency-driven method in terms of both
the QoE and the synchronization of tactile effects. We infer that the
cross-modality features that our method used helped to improve
synchronization of the spatial tactile stimuli with the audiovisual
content. Although the saliency-driven method and our method
obtained comparable results for spatially tracking moving objects
and adding tactile effects to the desired location in some video
examples (Fig. 8(b) M1, M2, M6, M7, M8) as we hypothesized in HI,
our method is more effective in temporally synchronizing tactile
effects to the examples (Fig. 8(b) M2, M3, M4, M5, M7) confirming
our hypothesis H2. Thus, cross-modal features allow algorithm to
provide a more spatiotemorally synchronized tactile effects and
improve the overall user experience compared to methods based
only on the visual features.

5 LIMITATIONS AND FUTURE WORK

One of the limitations of our current pipeline is that the sound
source localization model we used [36] can only identify 28 distinct
event categories. If none of the 28 events are present in a video, our
model will generate a random heatmap for sound localization which
substantially diminishes the user experience. Thus, we only used
10 - 20 second long video clips with events previously trained for
our model. This constraint allows a more meaningful comparison
for our user study. However, we can overcome this limitation in
the future by collecting and training the model with larger, more
diverse video datasets.The sound source localization model also has
a limitation dealing with videos with multiple sounding source in
the same scene, especially when they are from the same category
(e.g. a fleet of cars). Although the model will be able to extract
features from the audio signals and assign one or several cars as the
sounding objects, the real sounding source may be a different car
within the scene. This limitation can potentially be resolved in the
future by training the model on videos with stereo audio channels
to help understand the locations of the sounding objects.
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We used a 3 x 3 array of haptic actuators in this paper as it
has been shown to be the appropriate resolution for back of a
person [15]. However, if the vibrotactile display is to be mounted on
different body parts of a user with a higher tactile spatial resolution,
a vibrotactile display with a higher resolution will be necessary.

Ultimately, the goal of automatic tactile content authoring method
is to achieve a similar level of performance as a haptic designer. In
the future, we plan to compare the tactile effects by our cross-modal
method and those manually authored by a haptic designer.

6 CONCLUSIONS

We developed a framework to automatically generate spatial tactile
effects based on cross-modality features from a video. First, neural
networks are used to separate diegetic sound information which
is then used to locate the sounding object in the scene. The inten-
sity of the diegetic audio is translated to intensity of the tactile
stimuli while the probability heatmap of the sounding object is
mapped to spatial distribution of the tactile effects. Using an array
of 3 X 3 haptic actuators on the back of the users, we conducted a
human subject experiment to evaluate and compare videos with
tactile effects from our cross-modal method, a modified version of
the saliency-driven visual-based method [18], and videos without
any tactile effects. The study results demonstrate that the spatial
tactile effects generated by our cross-modal framework are more
promising in providing spatiotemorally synchronized and immer-
sive content than those generated based on visual features only.
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