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Merge/Split:
push together/separate 2 hands

 [far/close, 201, gesture]

Move to a specific location:
point at the new location 
 [far/close, 11, gesture]

Steer right/left:
push in the direction with 1 hand
 [far/close, 11/51/201, gesture]

Grab an object:
grab and move 2 robots next 

to the object
 [close, 201, touch]

Slow down:
make up and down movements 

with 2 hands
 [far, 51/201, gesture]

Figure 1. We ran an elicitation study to better understand how users control a swarm of robots. Examples of high agreement interactions are shown here. 
People used varying number of fngers/hands and different interaction modalities such as gesture and touch. The frst two values inside the brackets 
indicate the proximity and number of robots for the interaction and the last value indicates the interaction modality. The colored boxes indicate the 
task type that it belongs to. Blue, teal, and red boxes represent inter-robot interaction, navigation, and object manipulation task types. 

ABSTRACT 
A swarm of robots can accomplish more than the sum of its 
parts, and swarm systems will soon see increased use in appli-
cations ranging from tangible interfaces to search and rescue 
teams. However, effective human control of robot swarms has 
been shown to be demonstrably more diffcult than controlling 
a single robot, and swarm-specifc interactions methodologies 
are relatively underexplored. As we envision even non-expert 
users will have more daily in-person encounters with different 
numbers of robots in the future, we present a user-defned set 
of control interactions for tabletop swarm robots derived from 
an elicitation study. We investigated the effects of number 
of robots and proximity on the user’s interaction and found 
signifcant effects. For instance, participants varied between 
using 1-2 fngers, one hand, and both hands depending on the 
group size. We also provide general design guidelines such 
as preferred interaction modality, common strategies, and a 
high-agreement interaction set. 
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INTRODUCTION 
Robots are increasingly being deployed across personal, com-
mercial, and industrial sectors, with application spaces ranging 
from elderly-care social assistants to members of frefghting 
teams. We are moving towards a society where humans are 
actually outnumbered by autonomous and semi-autonomous 
agents in both their home and work lives, similar to the vision 
of “ubiquitous robotic interfaces” described in [20]. Some 
of these robots will work together in small groups, typically 
thought of as “multi-agent systems.” For applications where 
things like areal distribution, low unit cost, and robustness 
to agent failure are critical, research has begun towards the 
development of swarm systems, where, as in the natural world 
of insects, large (>10) groups of robots must work together to 
become more than the sum of their parts [38]. This emerging 
feld of swarm robotics presents many challenges in the area of 
human-swarm interaction (HSI), including the cognitive com-
plexity of solving tasks with swarm systems, state estimation 
and visualization, and human control of the swarm [23]. 

While HSI researchers have developed numerous ways to con-
trol a swarm of robots in situ [15, 3, 37], they all share one 
important limitation: lack of consideration for user’s prefer-
ences and intuition. Instead of integrating sensors that can 
sense a set of user-defned interaction, prior work has mostly 
focused on fnding a set of interactions that the existing robotic 
sensors can detect, and then semi-arbitrarily mapping these 
interactions to a set of control commands. This is a problem, 
as such interaction vocabularies may only be effective for do-
main experts or the designers themselves and could present 
a steep learning curve for novice users. As we see a near 
future with wider adoption of swarm robot technologies that 
will constantly exist in both our public and private environ-
ments, we focus on proximal control that could function on 
an encountered basis even for novice users. Thus, we sought 
to ground HSI through user-centric approaches. While prior 
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works have studied interaction with a single robot and ran 
elicitation studies on control of a team of drones [34, 17], it is 
unclear how those results map to grounded, large agent count 
multi-robot systems. 

To better understand how users prefer to interact with swarm 
robots, we present an elicitation study with up to 20 centimeter-
scale tabletop robots. As prior work has shown that number of 
robots and proximity to the robots affect human’s perception 
and behavior [47, 30], we also investigated the effects of these 
variables on user’s desired input method. The tasks ranged a 
large span of possible interactions, including formation control, 
parameter setting, cooperative manipulation, and human-robot 
teaming concepts (e.g. “follow me”). Care was taken to 
abstract implementation details from the users in order to elicit 
multi-modal input schemes which include gestures, touch and 
verbal interactions. Using the study results, we compiled a 
user-defned interaction set with interactions based on not only 
referents but also number of robots and proximity. We also 
examine overall trends on interaction modality, taxonometric 
breakdown, and agreement scores to better understand how 
participant interact. These results can inform the design and 
sensing required to support rich interaction with swarm robots. 

RELATED WORK 
The most relevant related areas of research to this work in-
clude swarm robotics, studies of control strategies for human 
operators of multi-agent systems, and prior elicitation-based 
studies of natural human-robot interaction methods. 

Swarm Robotics 
Swarm robotics is a feld concerned with the coordination of 
very large (greater or much greater than ten agent) groups of 
relatively simple, and often small, robots [38]. A survey by 
Dudek et al. [10] established taxonomies for swarm system 
implementations (e.g., based on communication topology or 
agent processing power) as well as their envisioned tasks (e.g., 
inherently multi agent, inherently single agent) which have 
been used to guide numerous later investigations. 

Another survey by Kolling et al. [23] describes and categorizes 
common swarm control strategies found in the literature; the 
choice between these common control strategies is often dic-
tated by a system’s described level-of-automation (LOA) [41], 
an idea which has been extended to include variable control 
schemes depending on a desired LOA on a per-task basis [8]. 
In an effort to uncover more natural interaction modes we have 
avoided describing to the users either the system implementa-
tion or context of the tasks in enough detail for them to rigidly 
ft into these taxonomies, although doing so has precluded 
us from assessing variable user-desired interaction schemes 
according to an autonomy spectrum. 

While other researchers have investigated the manipulation 
of swarm implementation parameters (e.g., group size, agent 
speed and coordination) on human physiological response [36] 
and affect [20], we instead seek to fnd how parameters like 
group size and distance from the user change desired operator 
control methodology. 

Swarm User Interfaces 
Inspired by the dream of “tangible bits” and “programmable 
matter” [16], one envisioned use case for robot swarms are as 
physical mediators of digital data; that is, a tangible user inter-
face (TUI). Researchers have begun to develop swarm-based 
tangible user interfaces for data visualization [24, 25], educa-
tion [32], and social interaction [21]. More versatile shape-
changing swarm robots have been demonstrated that could 
potentially span multiple application spaces [46]. Beyond us-
ing swarms as displays, the vision of ubiquitous robotics [20] 
builds on that of ubiquitous computing [50] to imagine versa-
tile robotic interfaces that are mobile, can physically manipu-
late the world around them, can convey information through 
dynamic action, and can form tangible links between the user 
and the physical world. Typical studies of swarm interfaces, 
however, focus on their effcacy at performing a given set of 
tasks, whereas in this work we instead look towards fnding 
natural methods for future users to command and interact with 
“ubiquitous” swarm systems. 

Human Control of Multi-agent Systems 
There is a good deal of research into effective computer inter-
faces for controlling swarms and multi-agent systems [22, 27], 
but here we focus on proximal control that could function on 
an encountered basis (i.e., without dedicated interface hard-
ware like a mouse and GUI). Most of the prior literature in this 
style seeks to demonstrate full end-to-end implementations 
in order to prove the viability of things like gesture-based 
control. A variety of possible sensor suites have been used 
for this purpose, including user-wearable attitude [15] or EEG 
sensors [43], centralized fxed vision systems [3], multi-touch 
screen [18, 21], and consensus-based distributed vision algo-
rithms [31]. The most relevant work specifcally investigates 
proximal interactions with wheeled multi-agent/swarm sys-
tems with well-defned task sets such as in [37]. In our study, 
we narrowly focus on single-operator multi-modal interaction 
within an on-table environment. In contrast with tabletop 
swarm interface work like Reactile [45], which was explicitly 
a tangible interface made for only physical interactions, we let 
the users decide how they interact with the robots. 

Human-Robot Interaction Elicitation Studies 
In an elicitation study, participants are prompted to choose and 
demonstrate their own preferred input method (and specifc 
action) for a given task. Although their effcacy in uncover-
ing natural interaction schemes has been validated in other 
areas [14, 53, 29], elicitation studies in the context of human-
swarm interaction remain rare. 

There are some examples of elicitation studies for control 
of UAVs in the literature, but the increased low-level con-
trol complexity for safely operating high numbers of proxi-
mal drones means that the number of robots interacted with 
in these studies is typically limited. A multimodal (gesture, 
sound, and touch) elicitation has been performed with a real 
single UAV [1], gesture-only elicitation for up to four real 
UAVs at a time [34], and for a swarm of 10 UAVs with voice 
and gesture multimodal input in simulation [17]. In contrast, 
working with on-table wheeled robots lets us deploy, with-
out computer-rendered or VR simulation, relatively numerous 
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Figure 2. Sample pictorial prompt for the "Scale up" referent. 

groups of small robots (i.e., closer to future envisioned swarm 
systems) operating on a 2-dimensional workspace. This capa-
bility provides us with the unique opportunity to investigate 
the effects of group size and robot proximity on user input 
preference across a wide swath of example tasks, without 
worry that our results will suffer from the documented “reality 
gap” that exists in simulated (as opposed to implemented in 
hardware) human-robot interaction studies [36]. 

ELICITATION STUDY ON IN SITU SWARM 
ROBOT CONTROL 
To better understand how users prefer to interact with a swarm 
of robots, we conducted an elicitation study on swarm robot 
control. Our study results can inform what types of sensors are 
needed to enable fuid interaction between users and a swarm 
of robots. We have pre-registered our elicitation study at 
OSF.io (https://osf.io/r8fnc) and all raw data along with study 
results are freely available at https://osf.io/dkja9/ as well. 

Hypotheses 
In addition to understanding how users interact with a swarm 
of robots, we investigated the effects of a few key interaction 
parameters: number of robots and proximity to the robot(s). 

H1: Number of robots will affect how users interact 
Researchers have shown that the number of robots can signif-
cantly alter how people perceive the robots when viewing their 
motion [36] or being touched by them [21]. Researchers have 
also developed different ways to teleoperate or remotely con-
trol a swarm of agents such as leader-follower [7], selection 
and beacon control [22], and physicomimetics [42]. Thus, we 
hypothesize that users will also adapt their interaction method 
for in situ control based on the number of robots. 

H2: Proximity to the robot(s) will affect how users interact 
Literature in Human-Robot Interaction (HRI) has shown that 
humans perceive robots differently based on their proximity 
as well as prefer robots that exhibit proxemic behavior [47, 
30]. Cauchard et al. have reported that when the robots were 
closer, users tended to use smaller motions [6]. Thus, we also 
hypothesize that proximity to the robot(s) will change how 
users choose to interact with a swarm of robots. 

Methodology 
We employed a similar method as in [6] with slight modif-
cations to address the real-time controllability of the robots 

Figure 3. Setup for the control elicitation study: After being prompted 
through a television monitor, participants interact with 20 robots on a 
table while standing. 

and to improve accessibility for non-native English speak-
ers. Instead of a complete Wizard-of-Oz (WoZ) elicitation 
study, we conducted a semi-WoZ study due to the diffculty 
of controlling a large number of robots impromptu. We pre-
programmed each referent and timed the initiation once the 
participants completed their interaction. As shown in Fig. 2, 
we displayed pictorial [1] instead of purely textual [6] prompts 
for the referents as they reduce verbal biasing and lower lan-
guage barriers for non-native English speakers. These prompts 
include initial and fnal state of the robots, and the task title. 

Apparatus 
We used a modifed version of Zooids, a wheeled multi-robot 
platform [24], with a higher gear ratio motor (136:1) in order 
to render more accurate movements similar to [20]. As shown 
in Fig. 3, the pictorial prompts for the referents were displayed 
on a 50 inch television monitor while a video camera was used 
to record participants’ interaction. Depending on the referent, 
up to 20 robots moved within a 1.4 x 0.89 m work space (i.e. 
projected space) on a table. 

Referents 
To generate the list of referents for this study, we combined 
the control and interaction commands from prior literature in 
swarm or multi-robot control [3, 15, 17, 48, 45, 43, 31, 37, 40] 
and interaction with a single or multiple drones [6, 1, 13, 34, 4] 
as shown in Table 1. For referents under the “Robot Selection” 
and “Inter-Robot Interaction” categories as well as “Move here 
and there” and “Grab an object” referents, only 20 robots were 
used since these referents are most relevant when there are a 
signifcant number of robots. To reduce study duration and 
user fatigue, we combined pairs of referents from prior works 
that were similar and opposite of each other such as “move 
closer/away”, “steer left/right”, and “move faster/slower”. For 
these pairs, each pair instead of each referent was presented 
under all 6 conditions (3 (# of robots) x 2 (proximity)). 

Participants 
15 participants were recruited (7 M, 8 F) from our institution. 
Age ranged from 19 to 41 (average: 29, std: 5.7). Their edu-
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Category | subcategory Referents [related work] 

Robot Selection 
(20 robots) 

Select one robot 
[15, 31, 3, 4, 34, 43, 37] 
Select a group of robots 
[15, 31, 3, 4, 34, 43, 37] 
Select all robots 
[15, 31, 3, 4, 34, 43, 37] 

Inter-Robot Interaction Form a circle [43, 34, 45] 
(20 robots) Split/merge [37, 17] 

Scale up/down [3, 34, 45, 13] 
Rotate [3, 13] 

User-Robot Navigation Move closer/away [6, 1] 
Interaction Follow me [6, 1] 
(1, 5, 20 robots) ETC Get attention [6, 1] 

Robot-Environment Navigation 
Interaction 
(1, 5, 20 robots) 

Manipulation 

Move to a location [15, 17, 13] 
Move here and there 
(only with 20 robots) 
Steer left/right [37, 43, 17] 
Stop [37, 43, 6, 1] 
Move faster/slower [15] 
Follow trajectory [3] 
Grab an object 
(only with 20 robots) [48] 

# of fnger 1-2 fngers 1-2 fngers are used. 
/hands one hand More than two fngers used. 

both hands Both hands are used. 

# of robots 
touched 

Control 
paradigm 

one robot 
few robots 
many robots 

leader-follower 
follow crowd 

User manipulates one robot. 
User manipulates 2-4 robots. 
User manipulates more than 4 robots. 

User manipulates only one robot. 
User manipulates a subset of robots. 

control all User manipulates all of the robots. 

Manipulation NP, NM Non-prehensile with no motion. 
type NP, M, NW NP with motion but not within hand. 

P, NM Prehensile with no motion. 
P, M, NW P with motion but not within hand. 

TOUCH 

GESTURE 

# of fnger 
/hands 

Form 

Nature 

Binding 

1-2 fngers 
one hand 
both hands 

static pose 
dynamic pose 
static pose & path 
dynamic pose & path 

deictic 
symbolic 
physical 
metaphoric 
abstract 
iconic 

robot-centric 
user-centric 
world-dependent 
world-independent 

1-2 fngers are used. 
more than two fngers used. 
Both hands are used. 

Hand pose is held in one location. 
Hand pose changes in one location. 
Hand pose is held as hand moves. 
Hand pose changes as hand moves. 

Indicative or pointing gesture. 
Gesture visually depicts a symbol. 
Gesture acts physically on objects. 
Gesture indicates a metaphor. 
Gesture-referent mapping is arbitrary. 
Gesture depicts aspects of spatial 
images, action, people or objects. 

Location defned w.r.t. robots. 
Location defned w.r.t. user. 
Location defned w.r.t. world. 
Location can ignore world features. 

Flow discrete Response occurs after the user acts. 
continuous Response occurs while the user acts. 

VERBAL 

Illocutionary 
acts 

Directives 
Expressives 

Get the hearer to do something. 
Express attitudes and emotions. 

Table 1. List of referents used in the elicitation study. 

cational backgrounds ranged from engineering (9), computer 
science (2), and others (4). They were compensated $15. 

Procedure 
For each referent displayed on the screen, participants

Push an object [40] 

 were 
instructed to perform any interaction method that they choose 
to complete the given task. They were told to focus on how 
they would prefer to interact as opposed to focusing on whether 
the robot(s) could understand their interaction. No suggestions 
were given on how to interact with the robot(s). After the 
participants completed each interaction, they explained their 
interaction in 1-2 sentences and rated their interaction on a 
7-point Likert scale in terms of suitability (i.e. how well 
their interaction ft the task), simplicity (i.e. how simple their 
interaction was), and precision (i.e. how precise the interaction 
was). To become familiar with the process, we included 3 
practice trials including one basic referent (move closer) and 
two referents that pilot subjects found more complex (follow 
me, steer right) in the beginning. They then proceeded to 
the actual experiment with 76 conditions in randomized order. 
After the participants completed the entire study, they flled 
out a post-test survey and had a short interview regarding their 
experience. 

ANALYSIS 

Taxonomy 
To understand what types of gesture, touch, and verbal interac-
tions were used, we analyzed them using a modifed version of 
the existing taxonomies in surface gesture [53], manipulation 
[5], and illocutionary acts [39] as shown in Table 2. 

Table 2. Taxonomy of Gesture, Touch, and Verbal Interactions. 

Gesture 
For gesture, we labelled each interaction by the number of 
fngers/hands used (one or two fngers, one hand, both hands) 
and by the four dimensions (form, nature, binding, fow) from 
the taxonomy of surface gesture [53]. For the four dimensions 
of surface gesture [53], we modifed categories within each 
dimension to better ft our context. For the form dimension, 
we removed “one-point touch” and “one-point path” as our 
interaction space is not limited to a 2-D space. Instead, we 
added “deictic” in the nature dimension as well as “iconic” 
to better classify 3-D gestures. For the binding dimension, 
we removed “mixed-dependencies” as we didn’t observe any 
corresponding interaction and added “user-centric” to better 
accommodate user-robot interactions. 
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Touch 
For touch interactions, we classifed each interaction by the 
number of fngers/hand used (one or two fngers, one hand, 
both hands), number of robots touched (one, few (2-4), many), 
number of robots touched simultaneously (one, few, many), 
control paradigm (leader-follower, follow crowd, control all) 
as well as using the “contact” part of the human manipulation 
taxonomy [5]. As we observed no within hand manipulation 
either non-prehensile or prehensile (NP, M, W or P, M, W), 
we excluded those categories. 

Verbal 
Searle classifed illocutionary acts into fve basic categories: 
representatives, directives, commissives, expressives, and dec-
larations [39]. However, as we only observed directives and 
expressives during the study, we labelled each verbal interac-
tion as one or the other. 

Reliability 
Two of the authors coded the interaction based on the recorded 
videos. To improve agreement, all four authors discussed the 
coding scheme and coded some common interactions together. 
To measure the Inter-Rater Reliability (IRR), the two coders 
independently coded 15 conditions from two different partic-
ipants and calculated the unweighted Cohen’s Kappa for 11 
items (average = 0.79, std = .17). For the remaining conditions, 
only one rater coded each condition. 

Agreement Score 
After grouping identical interactions within each referent, we 
computed the agreement score [52] for each referent, number 
of robots, and proximity. 

Statistical Analysis 
We used Fisher’s exact test of independence to test whether the 
proportions of one nominal variable are different depending 
on the value of another nominal variable as the sample size 
is relatively small (n<1000) [26]. Then, Bonferroni-corrected 
post-hoc tests were used to determine which pairs are signif-
icantly different. For instance, Fisher’s test was used to test 
whether the proportions of number of hands used for gesture 
interactions were different based on the number of robots. To 
compare the means of the participant’s ratings on their inter-
action for different number of robots, proximity, and tasks, 
we used N-way ANOVA followed by Bonferroni-corrected 
post-hoc tests. 

RESULTS & DISCUSSIONS 

Overall Trends 
Interaction Modality 
We categorized each interaction into one of the following in-
teraction modalities: gesture, touch, verbal commands, and 
combinations of them. Figure 4 presents the breakdown of 
interaction modalities used across all conditions. For multi-
modal interactions, they are counted in all relevant categories. 
For example, interactions with both gesture and verbal com-
mands are counted in “Gesture”, “Verbal”, and “G+V”. When 
looking at these overall results in the context of prior work, 
we see some similar trends to single robot interaction across 
different types of robots in terms of interaction modality - for 

60%

40%

20%

0%

Gesture Touch Verbal Gesture
+ Touch

Gesture
+ Verbal

Touch
+ Verbal

Figure 4. Breakdown of Interaction Modality for all conditions 

example, our results for cm-scale wheeled robots are similar 
to the results found by Abtahi et al. for a single caged “safe” 
aerial drone [1]. Yet, our results are quite different than that of 
uncaged “unsafe” drones, potentially due to the non hazardous 
nature of our small wheeled robots. However, our results are 
less directly comparable to other studies which did not explore 
the use of touch or direct manipulation for control of many 
robots as the study is done in a virtual environment [17, 34]. 
Yet, similar to [17], we also observed that the majority of the 
speech commands were accompanied by a gesture. 

Taxonometric Breakdown 
Using the taxonomies in Table 2, we labelled each interaction 
and the taxonometric breakdown is shown in Figure 5. 

Gesture: 
The majority of the gestures had static pose and path form. 
In terms of the nature, there is heavy reliance on the use of 
physical, symbolic, and deictic gestures. This suggests that 
similar to how physics engine is used for surface recognition 
[53, 51], swarm robot control could also beneft from a physics-
based detection algorithm. In addition, it is important for the 
recognition algorithm to know common symbolic gestures 
as participants expected the robots to understand common 
symbolic gestures such as a “stop” gesture with palm showing 
toward the robot(s) or a “calming” gesture for the slow down 
referent with hands moving down slowly. 

Most gestures were defned with respect to the robots and 
almost 90% were discrete. The fow was most likely infu-
enced by two factors. First, many of the referents such as 
robot selection tasks and get attention task are simple with no 
intermediate steps. Thus, there was no need for continuous 
input. Second, the robots were not fully controlled impromptu 
but rather had pre-programmed behaviors with investigator-
timed initiation. This setup did not allow any adjustments to 
the robots’ behavior after the initiation and thus discouraged 
participants from using continuous interactions. 

Touch: 
55% of touch interactions involved one or two fnger touch 
to physically manipulate one robot. When the task involved 
more robots, participants relied on different control paradigms 
such as leader-follower (where they only manipulate one robot 
and expect the rest to follow), and follow crowd (where they 
manipulate a subset of the entire group and expect the rest to 
follow) as it was diffcult to grab and manipulate all of the 
robots at the same time. 

We also observed that participants tended to use other modali-
ties when more robots were involved. For instance, P2 wrote 
in the survey that “...I wasn’t sure how to grab them all so it led 
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# of �ngers/
hands

Form Nature Binding Flow

100%

0%

one hand
(46%)

both hands
(24%)

1-2 �ngers
(30%)

static pose
(20%)

dynamic
pose and
path
(15%)

dynamic 
pose
(19%)

static pose
and path
(46%)

deictic
(25%)

symbolic
(30%)

iconic
(8%)

metaphoric
(1%)
physical
(32%)

abstract (4%)

robot
centric
(50%)

user-centric
(12%)

world 
independent
(10%)
world
dependent
(28%)

discrete
(89%)

continuous
(11%)

100%

0%
# of robots

touched
Control

paradigm
Manipulation 

Type
Illocutionary

Acts

one hand
(24%)

both hands
(21%)

1-2 �ngers
(55%)

few (2-4)
(8%)

many
(64%)

one
(63%) leader-

follower
(24%)

P, M, NW
(41%)

follow
crowd
(39%)

control all
(37%)

NP, NM
(12%)

NP, M,
NW
(43%)

P, NM
(4%)

Directives
(97%)

Expressives
(3%)

# of �ngers/
hands

GESTURE

TOUCH VERBAL

Figure 5. Taxonometric breakdown for Gesture, Touch, and Verbal In-
teractions across all conditions 

me to think of other ways to direct them other than touching 
them.” while P8 mentioned that “more robots there were, the 
more I was inclined to give a global input. Like audio.” 

43% of the touch interactions were non-prehensile with motion 
not within hand (C,NP,M,NW) while 41% were prehensile 
with motion not within hand (C,P,M,NW). We saw very little 
counts of prehensile manipulation with no motion (P, NM) as 
participants usually grabbed the robots to move them some-
where. Even for tasks where the robots do not need to move 
such as robot selection tasks, most interaction involved tapping 
or touching the robot(s) while there were only few instances 
of pure grasp with no motion. 

Verbal: 
97% of the verbal interactions were directives (i.e., com-
mands). However, there were a few cases where the partici-
pants used expressives instead to imply what the robots should 
do. For instance, a participant said “you guys are moving too 
fast” to imply that the robots should move slower, whereas 
another said “you guys are too tight” for the “scale up” refer-
ent. This suggests that some users may not always explicitly 
communicate the desired action and that a voice recognition 
algorithm will need to infer the user’s intention. 

Agreement 
The agreement scores across all interaction modalities for each 
referent, number of robots, and proximity are shown in Figure 
9. The overall average agreement scores for gesture, touch, 
and verbal interactions independently are AG = 0.3, AT = 0.56, 
and AV = 0.37. 

User-Defned Interaction Set 
The user-defned interaction set was generated by taking the 
most frequent interaction for each referent. If the same interac-
tion was used for different referents thus creating confict, the 
interaction was assigned to the referent with the largest group. 

The resulting interaction set is shown in Figures 1, 6, and 7. 
For each interaction, we describe the proximities, numbers of 
robots that the interaction is representative of, and the inter-
action modality of the interaction. These are represented by 
the three values inside the bracket after the description of the 
interaction. The subscript 1 or 2 under “far” or “20” indicates 
that the interaction is the frst or second most frequent inter-
action for the “far” or “20” robot condition. For example, for 
the top-left interaction “draw a circle with a fnger”, it is the 
most frequent gesture interaction for both far and close prox-
imity condition. Different task categories are indicated by the 
colored box around the illustration. Blue, dark green, orange, 
red, teal, and maroon boxes represent represent inter-robot 
interaction, robot selection, user-centered navigation, getting 
attention, navigation in environment, and object manipulation 
task types. 

Prior work has shown aliasing signifcantly improves the input 
guessability [12, 52]. In our interaction set, fve referents are 
assigned 1 interaction, eleven referents have 2 interactions, 
seven referents have 3 interactions, and one referent has 5 
interactions. Out of the 53 interactions in the fnal set, 15 
(28%) are performed with one or two fngers, 21 (40%) are 
performed with one hand, and 17 (32%) with both hands. 

Effects of Number of Robots 
As we hypothesized, the number of robots had signifcant 
effects on the participant’s interaction. It had a positive cor-
relation with the number of hands used, affected the control 
paradigm they used for touch interactions as shown in Figure 
8d, and had a negative correlation with participant’s simplicity 
ratings of the interaction (p < 0.05). 

Number of Fingers/Hands: 
The number of robots had a signifcant effect on how many 
hands the participants chose to use. When interacting with 
more robots, participants increased the number of their hands 
for both their gesture and touch interactions (both p < 0.001) 
as shown in Figure 8a and 8b. To control a single robot, they 
used one/two fngers or a single hand whereas they relied on 
both hands to interact with 20 robots. The post-test survey 
revealed that participants were indeed mindful of how they 
use the number of hands. For example, P9 wrote “If there was 
one robot I was more likely to use one fnger, versus all of 
the robots, I wanted to ... use two hands.”, while P5 wrote 
“I often wanted to use both hands when interacting with a 
group of robots, even though I knew already a single hand 
could work the same.” As P5 mentioned, even though there 
was no need or instruction to use more hands for more robots, 
participants felt the need to use both hands as confrmed by 
the study results. Although not explicitly studied, this trend is 
hinted in the interaction set from [34]. 

In addition to using both hands, we also observed that par-
ticipants tried to match the size of their hands, via spreading 
fngers, to the number of robots. For instance, P15 wrote in 
the post-test survey “I tried to spread my hands wide enough 
to cover the whole area of the robots” while P4 mentioned that 
“I tended to use all my fngers with larger groups.” Further 
investigation will be needed to confrm this. 
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Rotate: 
rotate wrist

[close2/far1, 20, gesture]

Form a circle:
form a circle with 2 hands 
[far/close, 202, gesture]

Form a circle: 
draw a circle with finger 
[far/close, 201,gesture]

Scale up/down: 
small to big circle with 2 hands 

and vice versa 
(far/close, 202, gesture)

Rotate: 
grab ends and rotate

[close1/far2,20, gesture]

Rotate: 
draw rotation with a finger

[far2, 20, gesture]

Select one:
tap with finger

[close1/far2,20, touch]

Select one: 
point with finger

[close2/far1, 20, gesture]

Select a group: 
touch with a palm

[close/far, 201, touch]

Move closer: 
point on the table with finger

[close2, 1, gesture]

Move closer: 
pull with 1 hand 

[close1, 5, gesture]

Select all: 
touch 2 ends with 2 hands

[close2, 20, touch]

Select all: 
diagonal swipe accross the 

robots  with 1 hand
[close1/far2, 20, gesture]

Move closer: 
pull with 2 hands 

[far1, 20, gesture]

Move away: 
wave away with 1 hand  

[far, 12/51, gesture]

Move away: 
push with 1 hand  
[far, 12, gesture]

Move away: 
push with 2 hands  

[close, 201, gesture]

Follow me: 
wave in with 1 hand

[close/far&1/51;far&201,gesture]

Follow me: 
pull the robot with 1 hand

[close/far, 11, touch]

Follow me: 
point to themselves
[close1,20, gesture]

Get attention: 
waive

[close/far, 1/5/201, gesture]

Get attention: 
fingersnap

[close/far, 1/5/202, gesture]

Move to a specific location: 
push a robot with finger

[far, 12, touch]

Move to a specific location: 
point with a hand

[close, 51, gesture]

Move to a specific location: 
push a robot in the direction

[far&12;far&51, touch]

Move to a specific location: 
move 1 robot to the location

[close, 201, touch]

Stop: 
make a stop gesture with 1 hand

[close/far, 11, gesture]

Stop: 
make a stop gesture with 2 hands

[close/far, 5/201, gesture]

Speed up: 
quickly rotate one hand

[far, 11, gesture]

Speed up: 
quickly rotate both hands

[close, 201, gesture]

Speed up: 
quckly move palms up and down

[close, 51, gesture]

Inter-robot interaction

Robot selection

Navigation in the environment

User-centered navigation

Getting attention

Steer left
push all with one hand

[far, 52, touch]

Steer right:
push the robot with 1 finger

[far, 12, touch]

Steer right:
guding gesture with 2 palms

[far, 202, gesture]

Stop: 
put palm on the table
[close, 52, gesture]

Figure 6. User-Defned Interaction Set. To save space, reversible gestures (split/merge, scale up/down, steer left/right) have been combined and the 
interactions shown on the frst page are not shown here. 
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Slow down: 
make up and down movement 

with 1 hand
[close, 11, gesture]

Follow trajectory: 
draw path with 1 finger

[close/far, 1/5/201, gesture]

Follow trajectory: 
draw path with a robot

[close/far&12;far&201, touch]

 Move a group here/there:
point at locations

 [far/close1, 20, gesture]

Grab an object:
make a grabbing gesture 

with 2 hands
 [far1, 20, gesture]

Grab an object:
make a surrounding gesture 

with 2 hands
 [close2, 20, gesture]

Push an object:
push the object with the robot

 [close1, 1, touch]

Push an object:
push the object with one hand

 [close1, 5, gesture]

Push an object:
push the object with two hands

 [far/close1, 20, gesture]

Manipulation

 Move a group here/there:
push a batch to a position

 [close2, 20, touch]

Figure 7. User-Defned Interaction Set 
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While our taxonomy does not capture the magnitude of the 
gesture (i.e., how big spatially the gesture is), participants also 
mentioned that they used “bigger gesture[s] for larger number 
of robots” (P3), made “larger motions when there were more 
robots” (P14). 

Control Paradigm for Touch Interactions: 
When interacting with many robots, participants were less 
likely to directly manipulate all of the robots as shown in 
Figure 8b (p < 0.001). To overcome this, they either used a 

leader-follower or a follow crowd control paradigm, where 
they directly manipulate either just one or a subset of the 
robots respectively. We see this change as the number of 
robots increases from 5 to 20, as shown in Figure 8b. 

Simplicity Ratings: 
The number of robots signifcantly affected the participant’s 
simplicity ratings on their interaction (p < 0.05). The simplic-
ity ratings for interactions with one robot were higher than 
those of interactions with 20 robots. 

Effects of Proximity 
As hypothesized, proximity to the robots had signifcant ef-
fects on how participants chose to interact in terms of number 
of hands used as shown in Figure 8c and their self-reported 
ratings on how precise their interaction was (p < 0.05). 

Number of Finger/Hands: 
Proximity had signifcant effect (p < 0.05) on the number of 
hands used for gesture as shown in Figure 8c. When the robot 
were far away, participants used one hand more often than 
when the robots were close. One potential reason for this is 
that when the robots were far away, we found participants 
tended to lean forward over the table to make the gesture 
clearer to the robots; it may have become more convenient or 
stable for the users to use only one hand in such a position. 

Precision Ratings: 
The proximity to the robots signifcantly affected the partic-
ipant’s precision ratings on their interaction (p < 0.05). The 
precision ratings for close proximity conditions were higher 
than those for far proximity conditions. 

Trends within Each Referent Category 
For each referent category, we compared its data with that of 
the remaining referents. For instance, for the robot selection 
category, we compared its data with that of referents not in the 
robot selection category. 

Robot Selection 
For robot selection tasks, participants relied signifcantly more 
on touch interactions than for non-selection tasks (p < 0.01). 
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Figure 9. Agreements for each referent across all interaction modalities. 

Also, proximity had a signifcant effect on the interaction 
modality (p < 0.05). When selecting robot(s) in close prox-
imity, participants tended to use touch interaction more fre-
quently than when selecting remote robot(s). As shown in 
Figure 10, participants used signifcantly fewer two-handed 
(p < 0.01) and “static pose and path” form gestures while 
using more “static pose” form gestures (p < 0.01) compared 
to the non-selection tasks. The nature of the gestures was also 
different as there was a signifcant increase (p < 0.001) in 
use of deictic gestures and decreases in physical and abstract 
gestures. Almost all of the gestures were discrete and robots-
centric. These results could inform the design of interaction 
techniques for selection tasks with many robots, which could 
be used in many applications such as infrastructure mainte-
nance [35], search-and-rescue [44], data physicalization [25], 
and environmental monitoring [9]. 

Inter-Robot Interaction 
For inter-robot interaction tasks, many participants used the 
shape of their hands to control the pattern formed with the 
robots which is also demonstrated in [34]. Contrary to 
the robot selection tasks, there was a signifcant increase 
(p < 0.001) in the use of two-handed gesture and a decrease 
in the use of one/two fnger and one-handed gesture. Partici-
pants relied more on iconic and physical gestures and less on 
abstract, deictic, and symbolic gestures to control the robots’ 
formations (p < 0.001). Similar to robot selection tasks, most 
gestures were discrete and robots-centric. These interactions 
can be used in applications like animation display [2] where it 
is critical to control the patterns formed by the robots. 

Navigation 
For navigation tasks many participants mapped movement of 
the robot(s) to hand motion, a similar trend as shown in [6, 
17]. We also observed a signifcant increase (p < 0.05) in 
multi-modal interaction, specifcally gesture combined with 
verbal commands. As shown in Figure 10, we saw signifcant 
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Figure 10. Taxonometric breakdown for different referent categories. 

increases in one/two fnger and one-handed gestures and a 
decrease in two-handed gesture (p < 0.001). Participants used 
more deictic and symbolic gestures and less physical gesture 
(p < 0.001). Presumably due to the nature of the tasks, there 
was a signifcant increase in continuous fow and a decrease 
in discrete fow (p < 0.001). These results can help inform 
the design of navigation control for deployment in search-and-
rescue [44] and mining or agricultural foraging tasks [19]. 

Object Manipulation 
Some participants explicitly communicated that they wanted 
the robots to push or grab the object through a tap or voice 
command, while others simply pushed or gestured the robots 
to move toward the object. There was a signifcant increase in 
touch + verbal interactions for the object manipulation tasks 
(p < 0.05). As may be expected as the tasks involved physical 
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manipulation of an object, we saw increases in physical nature 
(p < 0.001) and world-dependent binding (p < 0.001). These 
results are relevant for a number of different applications such 
as the development of domestic robots for cleaning [33] or for 
robotic assembly tasks [54]. 
Design Insights 
Based on the results of this study, this section presents a brief 
series of insights towards more effective interface design for 
future developers of swarm systems. 

Our user-defned interaction set suggests that the interaction 
vocabulary changes depending on the state of the robots. 
Specifcally, we observe that the number of robots as well 
as their proximity affects the user’s interaction. This dynamic 
interaction vocabulary means that in addition to being able to 
detect input, swarm state information needs to be constantly 
relayed to the interface device and combined with an inference 
of user’s intention in order to determine contextually relevant 
control inputs. 

Gesture was the most commonly used interaction modality 
(66%) and this mirrors prior works in human-drone interaction 
[6, 1]. This suggests that if one were to choose only one type 
of sensor, one should choose a sensor that can detect different 
types of gestures. Interestingly, prior works in swarm robot 
control were able to correctly choose gesture as their main 
interaction modality even without such an elicitation study [15, 
3]. Our study results better inform what types of gestures the 
sensor should be able to detect in order to better accommodate 
user’s preference. For instance, being able to sense both hands 
is important when the user needs to control different number 
of robots as our results show a positive correlation between 
the number of robots and the number of fngers/hands used. 
Simultaneously, there is a need to detect relatively fne gestures 
(e.g., those involving only one or two fngers) as 31% of user 
interactions fell in that category. 

While users heavily relied on gesture, they also used touch 
and verbal interactions 23% and 26% of the time. An ideal 
interface would be able to detect various types of touch and 
verbal interactions in addition to gesture. This would not 
only better support our user-defned interaction set but also 
provide users with additional degrees of freedom to leverage 
for different operational circumstances. For instance, in a dark 
room where the location of the robots is unknown, a user may 
fnd verbal interaction more useful than gesture or touch for 
getting attention of the robots. 

Robots at the scale used in this study will struggle with the pay-
load and energy demands of a vision system capable of user 
gesture identifcation, so even consensus-based approaches 
which take into account non-optimal classifcation may not be 
feasible. While centralized computer vision solutions (ideally 
incorporated into the infrastructure for robot path planning 
and control) may be the solution for tabletop and other station-
ary deployment environments, a gesture recognition device 
wearable by the operator may make the most sense for un-
structured or mobile applications. Based on our fnding that 
operators begin to use more two-handed gestures when robot 
number increases, a future wearable solution must be able to 
accommodate use of both arms/hands. 

We found a negative correlation between increasing number of 
robots and proximity from the robots and self-reported ratings 
of interaction Simplicity and Precision. This fnding aligns 
with prior research in teleoperated swarms, where users have a 
diffcult time predicting how their control input will propagate 
through swarms [17]. Future interfaces should be “predic-
tive” [49], providing some amount of feedback in real time 
to the user in the form of overlaid visual output from a path-
planning algorithm or haptic feedback through the interface 
device, in order to decrease this uncertainty. 

LIMITATIONS & FUTURE WORK 
The fact that our study was conducted with relatively small 
tabletop robots limits the generalizability of our results. For 
example, the size of the robots discouraged several participants 
(P5, P7, P8, P15) from interacting with physical touch as they 
were “scared to break them” [P5, P8] even though they were 
told not to worry about damage to the robots. Limiting the 
robot environment to the tabletop also sets bounds on the max-
imum distance from the user as well as the maximum number 
of robots that can be interacted with at a time. Future work 
should investigate interaction in a room-scale environment 
– not only would it add more potential robots and distance, 
but also another dimension to vary (i.e., workspace or group 
height relative to user). 

There exists a “legacy effect” in elicitation studies that leads 
users to fall back on their early or frst responses even when 
parameters or tasks are varied in the future [28]. A larger 
participant pool would help to disambiguate user responses 
from this effect in future studies. 

It is possible that the high percentage of users who elected for 
gestural control of the robots was infuenced by the fact that 
our study was limited to tasks where the human operator is 
solely engaged with the robots. Future work could investigate 
whether preferred user input modality is changed if, for exam-
ple, their visual attention is required elsewhere or hand(s) are 
otherwise occupied with some task. 

Prior work has shown differences in preferred user input 
modality depending on the cultural background [11]. We 
did not specifcally investigate this effect or account for it in 
our elicitation, although it is an important area for future work. 

CONCLUSION 
Mirroring the research that has shown a spectrum of feasible 
higher-level control strategies for swarm systems depending 
on their implementation details and level of autonomy, here we 
show that user-elicited interaction methods are closely related 
with the number of robots being interacted with at a time and 
their relative proximity. As future encountered robot swarms 
will be dynamic and mobile, our work indicates that their 
effective operation will also require dynamic, state-dependent 
interaction vocabularies to match them. 
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