
Zooids: Building Blocks for Swarm User Interfaces

Mathieu Le Goc1,3,4, Lawrence H. Kim2, Ali Parsaei2, Jean-Daniel Fekete1,4 Pierre Dragicevic1,4,
Sean Follmer2

1

Inria,

2

Stanford University,

3

Université Paris-Sud,

4

Université Paris-Saclay

{mathieu.le-goc, pierre.dragicevic, jean-daniel.fekete}@inria.fr, {lawkim, aparsaei,

sfollmer}@stanford.edu

Figure 1. Zooids can be held as tokens, manipulated collectively or individually, behave as physical pixels, act as handles and controllers, and can move
dynamically under machine control. They are building blocks for a new class of user interface we call swarm user interfaces.

ABSTRACT
This paper introduces swarm user interfaces, a new class of

human-computer interfaces comprised of many autonomous

robots that handle both display and interaction. We describe

the design of Zooids, an open-source open-hardware plat-

form for developing tabletop swarm interfaces. The platform

consists of a collection of custom-designed wheeled micro

robots each 2.6 cm in diameter, a radio base-station, a high-

speed DLP structured light projector for optical tracking, and

a software framework for application development and control.

We illustrate the potential of tabletop swarm user interfaces

through a set of application scenarios developed with Zooids,

and discuss general design considerations unique to swarm

user interfaces.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):

Miscellaneous

Author Keywords
Swarm user interfaces; tangible user interfaces.

INTRODUCTION
This article contributes to bringing closer to reality the vision

of Ivan Sutherland for the Ultimate Display as “a room within
which the computer can control the existence of matter” [70],

and Hiroshi Ishii’s vision of Radical Atoms where people can

UIST 2016, October 16-19, 2016, Tokyo, Japan

ACM ISBN . . .

DOI: http://dx.doi.org/10.1145/2984511.2984547

interact with “a new kind of matter capable of changing form
dynamically” [26].

Several significant steps have been recently made towards

Sutherland’s and Ishii’s visions, particularly through research

on actuated tangibles [48, 50, 78] and shape displays [55, 56,

15]. However, current systems suffer from a number of limita-

tions. First, actuated tabletop tangibles generally only support

the manipulation and actuation of a few (e.g., 3–4) solid ob-

jects, which is not enough to emulate physical matter that can

change form. On the other hand, shape displays try to achieve

surfaces that can be deformed and actuated, but current im-

plementations do not support arbitrary physical topologies.

Furthermore, both types of systems traditionally use physi-

cal objects primarily as input, while output is almost always

provided through separate pixel-based display technology. Al-

though video-projected overlays allows input and output to

spatially coincide [12], they provide only a limited sense of

physicality [5]. Likewise, many such systems require heavy

hardware or displays to function, and are thus primarily meant

to be operated in sterile environments rather than embedded

in our own physical world [24, 77].

Our research work fills this current gap in user interface tech-

nologies by introducing Zooids and swarm user interfaces
(see figure 1). A Zooid is a hardware and software system: a

small wheel-propelled robot with position and touch sensing

capabilities that can be freely arranged and repositioned on

any horizontal surface, both through user manipulation and

computer control.

A Zooid is defined in Wikipedia as “a single animal that is
part of a colonial animal. Zooids are multicellular; their
structure is similar to that of other solitary animals.” Zooids

build on work from swarm robotics [10, 68], adding interaction

and speed. Swarm user interfaces are interfaces built using

1

http://dx.doi.org/10.1145/2984511.2984547

collections of self-propelled physical objects (e.g., mini robots)

that can move collectively and react to user input. Swarm

user interfaces can be seen as a coarse-grained version of

Sutherland’s and Ishii’s futuristic visions of user interfaces

based on programmable matter.

Due to zooids’ ability to freely and quickly reconfigure them-

selves spatially, a collection of zooids can act as a display and

can provide meaningful user output. Due to their ability to

sense user actions, zooids can also support rich input. For

example, users can either move zooids one by one, or ma-

nipulate many zooids at once using “sweeping” gestures [35].

Sophisticated interactive behaviors can be implemented on the

application side, e.g., zooids can act as controls or as handles

for manipulating others zooids; they can even move other light

objects. At the same time, since all input and output can be

mediated through the same physical elements, the system is

able to achieve a complete fusion between input and output

and provide a full experience of physical manipulation. Fi-

nally, the system is relatively lightweight and only requires the

use of a compact DLP projector (122mm⇥115mm⇥48mm)

for optical tracking. Zooids can operate on any horizontal

surface (e.g., a sheet of paper, a messy office desk, a dining ta-

ble, or a game board), making it possible to blend swarm user

interfaces with everyday physical environments. To stimulate

future research on swarm user interfaces, we distribute our

Zooids tabletop swarm user interface platform in open-source

and open-hardware.

In summary, our contributions are:

• A working definition for swarm user interfaces with several

implemented examples,

• The first open-source hardware/software platform for exper-

imenting with tabletop swarm user interfaces,

• A set of scenarios to illustrate the unprecedented possibil-

ities offered by our system and by tabletop swarm user

interfaces in general,

• A discussion of some general design principles and design

challenges for swarm user interfaces.

Furthermore, as benefits, Zooids:

• can coexist in large numbers, in comparison to previous

actuated tangible user interfaces,

• can act as individual objects, while being small enough to

also act as “pixels” of a physical display,

• can be manipulated either individually or collectively, in-

cluding with physical tools such as rulers,

• are lightweight, can operate on any horizontal surface, and

relatively cost-effective: about 50 USD each now, down to

$20 if mass manufactured.

BACKGROUND
Our work is related to several research areas, namely: tabletop

tangible user interfaces, shape displays, swarm robotics and

data physicalization.

Tabletop Tangible User Interfaces
Although tangible user interfaces (TUIs) come in many dif-

ferent forms (including modular assemblies of sensors and

actuators [19, 40]), tabletop TUIs are particularly common.

Tabletop TUIs allow users to interact with digital informa-

tion by moving physical objects (tangibles) on flat table sur-

faces [72, 73]. These systems have been used for a range of

applications such as systems engineering control [51], musical

composition [52], urban planning [74], and education [23].

One limitation with classical tabletop TUIs is the one-way

mapping between digital and physical objects — if the former

change, the latter can become inconsistent [26]. A number

of technologies have been proposed to actuate tangibles, in-

cluding 2D gantries [6, 38], arrays of electromagnets [48, 50,

78, 76], arrays of ultrasonic transducers [42], electro-static

attraction [80, 4], vibration [57, 81] and mobile robots [60,

30, 58, 47, 43, 53, 49]. These systems also support position

tracking through a variety of means such as optical tracking

with cameras of LEDs or markers (including those using an

optical multitouch table), or projector-based tracking. The

tangibles range in size from coin-sized [48] to 10 cm [53].

A variety of interaction techniques have been explored on actu-

ated tabletop TUIs, primarily based on the direct manipulation

of a single tangible per hand [48], or of small groups of tangi-

bles through multitouch input [53]. Patten [50] explored the

use of passive tools in conjunction with actuated tangibles for

specifying computational constraints. Other researchers have

added dimensions such as vertical displacement to actuated

tangibles [43]. These active tangibles can provide haptic feed-

back while interacting, by applying force directly to the user’s

hand as they translate along the surface [48, 41]. Actuated

TUIs also provide opportunities for remote collaboration, as

remote objects can be kept in sync [6, 58].

The design space of tabletop TUIs is vast, and a lot has been

explored. However, previous systems have not considered

interaction with many (e.g., 10, 30 or more) small actuated

tangibles, which we show opens up possibilities for novel inter-

actions and applications. Also, in many previous systems [48,

50, 60, 58, 47, 43, 53, 49, 81], tangibles are used in conjunc-

tion with a graphical display, so the tangibles primarily act

as handles for digital information. We are interested in user

interfaces where the tangibles are used not only as controllers,

but also as representations of digital content.

Shape Displays and Programmable Matter
Shape displays are user interfaces involving physical surfaces

or volumes that can sense user input and whose geometry can

be computer-controlled [56, 61]. Many such systems sup-

port discretized shape control of 2.5D surfaces using arrays

of motorized bars [54, 39, 15], while other systems support

continuous shape control using pneumatic or hydraulic actua-

tion [14, 82] or shape-memory alloys [61]. Currently, many

of these systems require a heavy equipment and only allow

limited control over physical geometry and topology. In par-

ticular, none of the previous systems can emulate separate,

detached physical objects.

These research efforts are partly inspired by visions such as

Sutherland’s and Ishii’s discussed before, where computers

would be able to reconfigure physical matter to recreate any

physical shape. Other fields such as robotics and material

science have been interested in realizing this dream of “pro-

2

grammable matter”, but most of the progress so far has been

purely theoretical [18, 64]. Working prototypes rely on swarm

robotics, that we discuss next.

Swarm Robotics
Swarm robots draw from natural swarms, where social animals

such as birds or ants can produce complex collective behavior

by moving and interacting with each other according to simple

rules. The largest robotic swarm implemented so far involves

as many as 1,000 robots although they move slowly (about

1 cm/s vs. ~50 cm/s for Zooids) [63]. Our paper is inspired

from past research in swarm robotics [10, 9], but while the

area of swarm robotics has been mostly interested in how to

emulate swarm behavior using distributed intelligence and

fully autonomous agents, we focus on direct physical interac-

tion with small swarm robots, HCI applications, and employ a

centralized system to coordinate robots.

Researchers in robotics have started to develop methods for

interacting with swarm robots, but most of them have only

been tested on mouse-operated computer simulations [29, 31].

Alonso-Mora and colleagues investigated the use of swarm

robots as physical displays [2] and recently extended their

system to support interaction through sketching [21], hand-

held tablet input [20] and mid-air gestures [3]. Their systems

share many features with Zooids, but our paper instead focuses

on direct tangible manipulation of swarm robots and explores

a wider range of application scenarios.

Recently, Rubens et al [62] described a mid-air 3D physical

display system based on drones, with which users can inter-

act by directly manipulating drones. Despite their goal of

ultimately converging towards a swarm user interface, each

drone is rather large (8.9 cm) and the number of drones that

can be simultaneously used is limited due to turbulence is-

sues — their prototype currently consists of 3 drones. The

Drone 100 [16] project involves a hundred drones called “spax-

els”. Each is light-equipped and can be positioned in three

dimensions, resulting in a choreographed swarm capable of

displaying dynamic images. However, the large operating

volume prevents direct manipulation.

Data Physicalization
Based on research in cognitive science around embodied and

distributed cognition, there has been recent interest in the

information visualization field around physical data visual-

ization [28, 25, 84]. Researchers have already shown that

there can be benefits to passive physical representations of

data to promote engagement [45], to better support data explo-

ration [27], and for the vision impaired [36].

Less work has explored dynamic physical visualizations be-

cause they are more complex to build [28], but recent work

has investigated the use of 2.5D shape displays for data explo-

ration [71]. However, the range of visualization techniques

that can be supported with 2.5D shape displays is limited.

Swarm interfaces provide a promising platform to physical-

ize many traditional 2D information visualizations, as well as

newer interactive data visualizations [83, 44].

Swarm User Interfaces
We propose to refer to swarm user interfaces (swarm UIs) as:

“human-computer interfaces made of independent self-
propelled elements that move collectively and react to
user input”.

Independent: the user interface elements need to be physi-

cally detached from each other and free to move. Counter-

examples include graphical elements on a computer display,

which are all part of a single physical object. Articulated mod-

els, 2.5D shape displays [15] and physical control panels such

as mixing consoles also do not qualify, since the moving parts

and controls are attached and not free to move.

Self-propelled: the elements need to be able to move without

external forces. Counter-examples include passive physical

tokens [25, 34].

Move collectively: by definition, swarming behavior involves

collective motion. Thus the elements need to be able to move

in a coordinated fashion, either by exchanging information

with each other or with a centralized coordinator. In addi-

tion, the more elements a user interface contains, the more

their motion can be qualified as collective, and thus the more

"swarm-like" the interface is.

React to user input: the elements need to sense user input

and react to this input. Thus, most swarm robotics systems

are not swarm user interfaces, because they lack the user

interaction element. A swarm display that is interactive but

only takes user input from external sources — e.g., a mouse or

a keyboard — is not a swarm user interface either according

to our definition, because the elements themselves need to be

able to react to user input. Systems that use computer vision

to detect mid-air gestures such as DisplaySwarm [3] are in

a gray area. For smooth interaction, speed of the system is

critical: the elements of a swarm UI need to be fast enough

for shape change to occur at a usable rate. The ideal transition

time is in the order of one second, because this is about the

limit where a system is perceived as interactive [46], and it

is also the recommended duration for animated transitions on

regular graphical displays [22].

The systems that come closest to swarm user interfaces ac-

cording to our definition are self-propelled tangibles [60, 30,

58, 47, 43, 53, 49] and BitDrones [62], because they are made

of independent self-propelled elements that can move in a

coordinated fashion and can be directly manipulated. How-

ever, these systems involve few elements (i.e., around 4-5),

and are thus at best low-fidelity prototypes of actual swarm

user interfaces. While many such systems could have involved

more units, a small form factor (e.g., zooids are more than 3⇥
smaller than Rosenfeld’s [60] robots) enables different types

of interactions. Users can manipulate many zooids at once,

while several dozens of larger robots may not even fit on a

regular table. Moreover, previous work does not discuss or

demonstrate swarm user interfaces, which are our focus.

In principle, swarm user interfaces could take many forms

and could be implemented in many different ways. For exam-

ple, a swarm UI can consist of free-floating particles [66] or

3

drones [62] that are free to move in 3D space, or can consist

of objects that evolve on a 2D surface [48]. In this article we

focus on elements that move on a 2D surface, i.e., tabletop

swarm user interfaces. Next, we discuss our implementation

of zooids, then illustrate the possibilities offered by tabletop

swarm interfaces through examples implemented using zooids.

SWARM UI EXAMPLES WITH ZOOIDS
In this section we illustrate and discuss possibilities Zooids

offer through simple use cases and scenarios, before explaining

their hardware and software design. Most examples can also

be seen in the accompanying video.

Swarm Drawing

43

21

Figure 2. Freehand swarm drawing (1-3) and curve manipulation (4).

Freehand Drawing

Inspired from vector graphics authoring tools, we have imple-

mented a swarm version of a freehand drawing tool, shown

in Figure 2: initially, the freehand drawing zooid stands in

the center of the working surface, while unassigned zooids

wait at the top, in an idle state (Figure 2-

0

1). When the user

drags the freehand drawing zooid, the previously idle zooids

move to the path of the drawing zooid to form a physical trail

(Figure 2-

0

2 and

0

3). When the system runs out of idle

zooids, the trail follows the freehand drawing tool like a snake.

The curve can also be deformed by dragging its constituent

zooids individually (Figure 2-

0

4), or by moving many of

them simultaneously, e.g., by pushing them with the side of

the arm.

321

Figure 3. Circle swarm drawing, where zooids are automatically in-
serted (2) or discarded (3) depending on the circle’s diameter.

Shapes

We also experimented with tools for drawing lines, rectangles

and circles, based on the standard rubber band technique from

desktop applications. Each of these tools employs two zooids

as control points. Figure 3 shows the example of a circle tool,

where two control points are used to define the circle’s diame-

ter, and idle zooids are automatically positioned to complete

the circular shape. Zooids are also automatically added or

removed depending on how many of them are necessary to

construct the shape. Another zooid at the bottom of the table

(not shown) allows users to switch between shapes.

Bézier Curves

In traditional vector drawing editing tools, Bézier curves allow

for accurate shaping using discrete control points. We devel-

oped a physical curve editing tool where a collection of zooids

are positioned to represent a curve. While shaping using the

previously introduced drawing tool requires to manipulate

many zooids at once, this tool uses specific zooids as control

points to adjust the curvature represented by the collection.

Each control point consists of two zooids, where one sets the

anchor point and the other adjusts the tangent.

It is important to note that although GUIs currently support far

higher information resolution, Zooids enable richer physical

gestures. We believe that technology advances will allow

higher resolution of swarm UIs in the future.

Interactive Swarm Visualization
100%

50%

0%

CPU RAM

NOW

NOW1 min234

1 min234567

Figure 4. A line chart visualization using zooids.

Time-Series Navigation

We used zooids to visualize and navigate in time-series data.

The physical interface illustrated in Figure 4-

0

1 shows with a

line chart the evolution of CPU usage on a computer. Decora-

tions such as axes and labels are static (e.g, printed on paper),

while the data visualization itself is dynamic and continuously

updated – the line chart appears to move to the left as new data

arrives. At the bottom of the interface, zooids take on the role

of widgets to let users customize the display and navigate the

data. The two zooids at the bottom right specify the time range

to visualize – they act like the two thumbs of a range slider [1].

If the user moves the left thumb to the left (see Figure 4-

0

2),

the line chart stretches to show a wider time range. Moving

both zooids to the left scrolls in the past. Finally, another zooid

(see center of Figure 4-

0

1) lets users switch the visualization

between CPU usage and memory usage.

Multiple Scatterplots

Scatterplots are one of the most common way to visualize

data points. Looking more specifically at multivariate data,

the ability to represent multiple dimensions at the same time

is particularly relevant to better understand the data, identify

trends and isolate clusters. Our scatterplot physicalization tool

allows for multiple juxtaposed representations of a dataset,

each representing a unique couple of dimensions. One repre-

sentation can help identify a group of points. The user can

4

then pick up these zooid, and place in another scatterplot. As

each zooid embodies a specific data point, moving it into a

different chart allows users to probe different dimensions. In

addition, the users can place the zooid on a active graphical

display, such as a mobile phone or tablet, to find out additional

parameters and information about that data point.

Stop Motion Swarm Animation
Inspired by traditional stop motion animation tools, we imple-

mented a tool enabling users to author physical animations.

The user positions each zooid to form the desired layout. Mov-

ing the timeline zooid a step forward saves the current layout

as a key frame. Once the desired layouts have been recorded,

toggling the second control zooid switches the mode to play-

back and plays consecutively the different keyframes.

In-the-Wild Scenarios
Although we have not implemented specific applications, we

have begun to experiment with in-the-wild scenarios, in which

zooids could be embedded with real-world environments. For

example, they could be placed on a user’s working desk to

act as ambient displays (e.g., to show progress in downloads),

extra controls, or as notification devices (e.g., they could hit a

metallic or glass object when an important event starts or to

remind you to drink water). Enough zooids can even move

objects such as smartphones.

ZOOIDS HARDWARE AND SOFTWARE DESIGN
Elaborating from the examples of uses of zooids just presented,

this section explains their hardware and software design.

Hardware
Robot Design

PCB

Battery

Motor Holder

Motors & Wheels

Enclosure

Touch Sensor

Caster wheels

Figure 5. Exploded view of a zooid.

Zooids are small custom-made robots as shown in Figure 5;

their dimensions are 26 mm in diameter, 21 mm in height

and they weight about 12 g. Each robot is powered by a 100

mAh LiPo battery and uses motor driven wheels. The motors

are placed non-colinearly to minimize the diameter. Even

though the motors do not rotate around the same axis, the

robot has the same net force and moment as would a robot

with colinear motors. To drive the robot, a motor driver chip

(Allegro A3901) and two micro motors (FA-GM6-3V-25) are

used. With this combination, the robot has a maximum speed

of approximately 74 cm/s. However, for controllability and

smoothness of the motion, the robots move at a slower average

speed of 44 cm/s for our applications.

A flexible electrode is wrapped inside the 3D printed enclo-

sure to provide capacitive touch sensing capabilities. An in-

tegrated capacitive touch sensing circuit is included (Atmel

AT42QT1070) to detect user’s touch.

Embedded custom electronics, shown in the PCB layer of

Figure 5, allows for robot control. A 48MHz ARM micro-

controller (STMicroelectronics STM32F051C8) manages the

overall logic computation and communicates wirelessly with

the main master computer using a 2.4GHz radio chip (Nordic

nRF24L01+). As part of the projector-based tracking system

(explained in the next section), two photodiodes are placed at

the top of the robot. Placed between the photodiodes, a color

LED is used for robot identification and feedback.

Most of the power in the robots are consumed by (in order)

the motors, radio module, micro-controller, and LED. When

stationary, each robot consumes approximately 40 mA and

100 mA when moving. Thus, with a 100 mAh battery, robots

are capable of moving for one hour, and can work even longer

under normal usage.

Radio Communication

Each robot communicates with the radio receiver using the

NRF24L01+ chip. Using a teensy 3.1 microcontroller as the

master and Arduino Pro mini as the slave, we tested the total

communication times for different numbers of slaves per mas-

ter and packet sizes. From the experiment, we found that the

total time is linearly dependent of both packet size and number

of slaves, and that we could have up to 18 slaves per master

for a packet size of 12 bytes. Zooids uses 10 slaves per master

for a safety factor of about 2.

Projector-based Tracking System

A projector-based tracking system similar to Lee [37] is used

for robot position tracking. As opposed to camera based sys-

tems, our projector based tracking system does not add any

latency from networking for the local feedback control on each

robot, making position control more stable. Our system setup

is demonstrated in Figure 6. Using a high frame-rate (3000

Hz) projector (DLP LightCrafter) from Texas Instruments Inc.,

a sequence of gray-coded patterns are projected onto a flat

surface. Then, the photodiodes on the robot independently

decodes the gray code into a location within the projected area,

and sends its position and orientation to the master computer.

Due to the number of the patterns, the position refresh rate is

approximately 73 Hz (1/(41 images per pattern ⇥ 1/3000)).

Due to the diamond pixels of the projector, the horizontal

and vertical resolutions slightly differ. In the current setup in

which the projector is placed 1.25 m above the table produc-

ing a 1m⇥0.63m projection area, the horizontal and vertical

resolutions are 1.15 mm and 1.12 mm, respectively.

Calibration

Due to the discrepancies of the hardware, all robots do not

exactly behave in the same manner and thus calibration for

crucial elements is needed.

Minimum Speed Duty Cycle Each robot has a minimum

speed or Pulse Width Modulation (PWM) duty cycle that is

needed to overcome the static friction between the wheels

5

HardwareServerSimulationApplication

API

Goal

Goal

Orientation

Color

Robots

Position

Orientation

Touch

Path

Planning

Steps

Figure 6. Software Architecture.

and the ground surface. While the robots have similar mini-

mum duty cycle, they do not behave identically. Thus, during a

startup phase, each robot goes through an initialization and cal-

ibration process to find their own parameters. This is achieved

by incrementing the PWM duty cycle until it achieves moving

the robot by 5 mm in 100 ms.

Preferred Speed Duty Cycle For most of their active time,

robots move at their preferred speed. Similar to the minimum

speed, there is a need for calibrating the preferred speed duty

cycle. This is achieved again incrementing the PWM duty

cycle until it moves at the nominal preferred speed of 44 cm/s.

Gain between Motors As each robot behaves differently, the

motors within the robot also behave differently and thus, a

calibration between the motors is needed. The calibration

process is as follows: record the initial orientation, let the

robot move for 0.5 s, compare the final and initial orientation

and either increase or decrease the motor gain accordingly.

This process is repeated until the initial and final orientations

are less than 5 degrees apart.

Software
As shown in Figure 6, the communication structure consists

of four main layers from highest to lowest level: Application,

Simulation, Server, and Hardware.

At the application level, the desired positions of the robots

are computed. These desired positions are transmitted to

the simulation layer through a network socket. The appli-

cation programmer can choose between two control strate-

gies: Proportional-Integral-Derivative (PID) position control

or Hybrid Reciprocal Velocity Obstacles (HRVO) combined

with PID (these options are explained in the next paragraphs).

Based on the chosen control strategy, the simulation layer

computes the goal positions of the robots, either final positions

for PID or intermediate points for HRVO, and sends them to

the server. Finally, the server layer dispatches commands to

the individual zooids, while at the same time monitoring their

status and position.

The control procedure for our system consists of three steps:

• Hungarian goal assignment (optional)

• HRVO global control strategy (optional)

• PID position control.

Speed =
Preferred Speed

New final
goal

Within 1cm
of final goal

Within
5cm

of final
goal

Aligned

INITIAL
 ORIENTATION

TOWARDS GOAL

1

ACCELERATION TO
PREFERRED SPEED

2

CONSTANT SPEED
WITH ORIENTATION

CONTROL

3

DECELERATION TO
MINIMUM VELOCITY

4

STOP AND
ORIENT

5

New
intermediate goal

Figure 7. Structure of local PID position control

Before any movement, each robot first needs to be assigned

its final position. The final positions may be specific for each

robot or they can be dynamically assigned to move in a more

efficient manner. The Hungarian algorithm [32], a well-known

optimization method for one-to-one task-agent problems, can

be used to assign the goal positions to robots in an optimal

fashion. The cost function to be optimized is the summation

of the squared distances from the initial to the final positions.

After the goal assignment step, robots need to move toward

their goals, while minimizing possible collisions with each

other robot. We chose to use the HRVO control strategy [67,

68] due to its fast real-time path planning capabilities. With

HRVO, a robot moves at the user-defined preferred speed

unless it detects possible collisions. In that case, it uses the

notion of velocity obstacle, i.e., the set of all robot velocities

that will result in a collision with another robot. While HRVO

does not guarantee collision-free, oscillation-free control, it

reduces the number of collisions dramatically compared to

other velocity obstacle strategies while providing real-time

updates, essential to natural and smooth user interactions. To

implement HRVO, we used a slightly modified version of the

HRVO library created by Snape et al. [67, 68].

With the HRVO control strategy, we can derive the incremental

goal positions along a path for each robot. These positions are

sequentially sent to each robot which independently controls

its motion through a PID controller based on the state machine

shown in Figure 7. Given a final goal, the robot initially turns

itself in the right direction and, once aligned, accelerates to

its user-defined preferred speed. When it reaches the speed, it

maintains it with a PID control on the orientation to ensure its

direction towards the final goal. When a new incremental goal

is given, it will still move at same speed but the PID control on

orientation will direct the robot towards the new intermediate

goal. When the robot arrives within 5 cm of the final goal, it

slows down to its minimum velocity and once within 1 cm

of the final goal, it stops and orients itself as commanded by

the application programmer. To enable smooth transitions

between the incremental goal positions, robots are given their

next position at 60 Hz.

6

Single (1:1)

Interaction

Handles (1:many)

Groups (many:many)

Display

Stuff vs. Things

Animation

Homogeneous
vs. Heterogeneous

Environment

In the Wild

Paper Templates

On Displays

Figure 8. Design Space explored with Zooids.

SWARM UIS: DESIGN PRINCIPLES AND CHALLENGES
Swarm UIs radically change the way we think of user inter-

faces, not only from an end user’s perspective but also from an

application designer’s perspective. We discuss new concepts,

and highlight the major differences here.

Figure 8 gives an overview of the design space of Swarm

Interfaces. They can be organized into an interaction aspect

(interacting with one zooid, controlling many with one zooid,

or with groups), a display aspect, and an environment aspect

(operating in a neutral area, in a crowded desk populated with

external objects, over a static background layer, or over a

dynamic display). We expand on some of these aspects below.

Display: Things vs. Stuff

classical TUIs

things

zooids swarm UIs

stuff

objects particles atoms

Figure 9. The continuum between “things” and “stuff”.

Designing swarm UIs requires thinking both in terms of

“things” and of “stuff”. In our previous examples, a zooid

can stand for an individual object (e.g., a widget) or be part

of a larger collection of objects (e.g., a circle). Figure 9 il-

lustrates the continuum between these two paradigms: things
are physical entities experienced as individual, solid objects;

Stuff consist in physical entities experienced as shapes and

material that can be reshaped, divided, merged, or temporarily

solidified to emulate things. The elements making up stuff

can be large enough to be visible (particles) or too small to

be visible (atoms). Typical TUIs are located to the left of the

continuum — they are made of things. In contrast, Swarm UIs

occupy the right half of the continuum. As a low-resolution

swarm UI implementation, zooids stand in the gray area of the

continuum and have both the affordance of things and stuff.

The thing-stuff continuum also applies to traditional graphical

displays. Many computer displays from the 80’s were very low

Figure 10. Alien from the game Space Invaders from Taito (1978) and
main character from the game Mario Bros by Nintendo (1983).

resolution (semi-graphics from the Sinclair ZX-81 and Tandy

TRS-80 were 64⇥ 48 pixels), thus pixels were discernible

particles much like the zooids in our previous examples (see

Figure 10). Now with ultra-high resolution displays pixels

became practically invisible, i.e., they became atoms. There

are however major conceptual differences between pixel-based

displays and swarm UIs, which we discuss next.

Display: Fixed vs. Movable Elements

21

Figure 11. A circle obtained by assembling 16 elements using (1) Bresen-
ham’s algorithm and (2) free object positioning.

We are used to program graphics on computer displays where

the elements (pixels) are arranged on a regular grid, and only

their color is controlled. Although elements of swarm UIs can

also have different colors (in our system, each zooid embeds a

color LED), a major difference is that they can be positioned

freely. Even at equal resolution between the two systems, the

way elements can be combined into shapes is very different

(see Figure 11). In general, free positioning allows finer shape

control than simply turning pixels on and off. At the same

time, this extra flexibility comes at the cost of slower response

time and higher engineering complexity, with algorithmic

problems such as collision avoidance and optimal element-

target assignment. In addition, with systems with few elements

such as zooids, designers need to think carefully about how to

use every zooid optimally, the same way designers from the

80’s had to think carefully about how to best use every pixel.

It will become less of a concern as the resolution of swarm UIs

increases, but on the other hand, engineering and algorithmic

challenges will likely become harder. In addition, as shown in

Figure 8, the display elements may be homogeneous, as with

zooids, or heterogeneous.

Display: Fixed vs. Variable Numbers of Elements
On regular graphical displays the total number of pixels is

generally fixed, and the illusion of having more or less content

on the screen is achieved by simply manipulating pixel color

(e.g., having more or less dark pixels on a white background).

In contrast, many swarm applications (e.g, our drawing appli-

cation) require the number of elements to actually change over

time. Zooids cannot be created or destroyed, but as we saw,

unassigned zooids can be placed in a dedicated region and

moved to the working area whenever they are needed. This

type of object persistence contributes to realism and can help

7

users remain oriented across view changes [7]. As a result,

object persistence is often implemented as a metaphor in mod-

ern GUIs (e.g., [44]). Swarm UIs support these metaphors

natively, and they force designers to think about how to ani-

mate appearance and disappearance [7]. However, when true

appearance and disappearance are needed, swarm UIs may be

impractical and the motions produced by elements constantly

arriving and departing can be distracting to end users.

Display: Elements with an Identity vs. Interchangeable
Elements
One important distinction to be made is between swarm UI

elements that have a fixed identity, and elements that are in-

terchangeable. In general, elements used as “things” have a

fixed identity, whereas elements making up “stuff” are inter-

changeable. For example, in our shape drawing application,

the zooids that make up a circle or a line do not have an identity

of their own and could be freely swapped. As explained in the

implementation section, this makes it possible to optimize the

swarm interface so that the motion of zooids remain minimal

even during complex transitions. At the same time, swapping

a widget (e.g., one of the handles) with another zooid is not

desirable, as this might be disorienting to a user, especially if

she was about to grasp it. Similarly, in systems where each

zooid has a stable meaning (e.g., a visualization system where

a zooid represent a data point), swapping zooids can produce

confusing or misleading animations. Therefore, the designer

of a swarm UI should think carefully about which elements

are interchangeable, and which elements should be given a

fixed identity. Finally, elements that are manipulated should

never be reassigned, which is ensured automatically in our

current Zooid implementation.

Interaction: Element Manipulation
Regular graphical displays do not allow pixels to be physically

manipulated. Although direct touch displays give a decent

illusion of direct manipulation, the subjective experience and

the level of expressiveness fall short of true physical object

manipulation [75]. In contrast, zooids can be grasped and

directly manipulated, allowing to tap into the richness of hu-

man hands [34]. For example, in our swarm drawing scenario,

users can not only manipulate curves using surrogates such as

control points, they can also shape the curves directly. Our sys-

tem explicitly supports such interactions by registering when a

zooid is touched and by constantly updating its goal based on

its position. Generally, swarm UI designers should not only fo-

cus on the design of “synthetic” interactions, but also consider

what is possible in terms of purely physical interactions [28].

Due to their form factor, zooids can be manipulated both as

collections of objects (stuff), and as individual objects (things).

As swarm UI elements get smaller though, affordances will

change dramatically. For example, grains of rice can be manip-

ulated individually, but rice better affords being manipulated

as “stuff”. While object manipulation is supported natively in

systems with large enough elements like ours, future swarm

UIs will need to be able to coalesce multiple elements into

solid objects to be able to support similar manipulations.

Interaction: Differing Roles of Elements
Different swarm UI elements can be given different roles. For

example in our time series visualization application, the top

zooids are used for display purposes only, while the bottom

ones are used as controllers. On the drawing application, in

contrast, zooids are used both for input and output, although

different zooids interpret input differently. For example, in

our rectangle drawing tool, moving the two control points re-

shapes the rectangle, while moving any other zooid translates

it. Giving different roles to different swarm UI elements al-

lows for more design flexibility, but it also poses the problem

of how to convey affordances. In our example applications

we assign different LED colors to different functions, but the

color mappings are arbitrary and this approach assumes a user

who is already familiar with the system. Better affordances

could be conveyed by giving different zooids different shapes,

consistent with the tradition of TUI design [13]. These differ-

ent shapes could be clippable, or alternatively, zooids could

change their shape dynamically. For a high-resolution swarm

UI however, a more natural approach would consist of produc-

ing objects of different shapes by assembling many particles

or atoms together, as we discussed previously.

Environment: Extra Visual Feedback
Although the drawing application we illustrated is a pure

swarm UI, in practice many coarse-grained swarm UIs would

need the display of extra visual information (such as text) to

be really usable. We illustrated two ways of doing this: one

can craft a support surface that contains all the necessary anno-

tations, provided these are stable over time (as in, e.g., board

games). When annotations need to change over time, zooids

can be placed on a regular graphical display, or alternatively,

top projection can be used if optical tracking is in the IR spec-

trum. Despite the current need for extra display hardware,

zooids can convey more visual information on their own than

traditional TUIs that only involve a few tangibles as controllers

and typically convey most visual information through addi-

tional graphical overlays. One can imagine that future swarm

UIs will be high-resolution enough to be able to act as displays

of their own, thereby entirely eliminating the need for virtual

information overlays that suffer from many problems such as

(for top projection) occlusion, difficulty of calibration, and

difficulty of projecting on shiny or dark surfaces [17].

LIMITATIONS AND FUTURE WORK
There are a number of technical limitations with the Zooids

system that limit its capabilities and performance as a swarm

user interface. These range from the scale and speed of the

device to the cost.

One significant limitation is that our robots have a non-

holonomic drive, meaning that they cannot move freely in

two-dimensional space and instead must turn to a specific

heading like a car. Having a holonomic system with an omni-

direction drive would allow the robots to move more smoothly

and more easily respond to user interaction. Unlike the case

of using robots as displays, where movement paths can be

pre-computed [63], our interactive systems may not be able

to find a simple or comprehensible path, especially when the

movements are over small distances.

8

Currently, our sensing of input is limited to capacitive touch

input on each robot around its circumference. When inter-

acting with many zooids at once, not all touch sensors will

be activated, only the ones directly touching a user’s hand.

Sensor fusion techniques could be used to identify and match

the motion between two or more robots that are being moved

in unison. This would allow for richer interaction techniques

leveraging the direct manipulation of many robots at once.

Another technical limitation of our system is its use of an

external projector for tracking. This requirement adds cost

and also requires additional hardware and set up to use the

system, impeding the scalability of zooids. In addition, like

all optical tracking systems, our system is limited by occlu-

sions which may often happen when interacting with the sys-

tem. Finally, our projector and photodiodes operate in the

optical light spectrum, making it hard to use with too much

ambient light (this could be improved some with the use of

an IR projector and Photodiodes). A number of different

approaches could improve our tracking. Using rotating IR

laser line beacons, similar to Valve’s Vive Lighthouse tracker

(http://www.htcvive.com) could significantly reduce the cost,

and having multiple beacons could solve some occlusion prob-

lems. However, we see great potential in wireless tracking,

which could reduce setup to adding a small number of fixed

beacons (anchors) for localization with received radio sig-

nal strength. Alternatively, future work on improving dead-

reckoning location techniques with sensor fusion between

wheel encoders and IMUs, coupled with either IR or RSSI

anchor free localization between elements, could reduce the

need for external tracking completely. We believe that ad-

vances in technology will benefit swarm UIs, allowing for

more ubiquitous installations.

Power and charging management of many robots presents

many challenges. Currently, our system relies on individual

chargers in which each robot must be placed manually. An au-

tomated system, potentially with integrated wireless charging

coils in each robot could allow robots to charge autonomously

when needed by returning to a charging base station.

The scale and number of elements in our current system limits

the type of interaction and applications that can be created —

smaller and more elements may allow for radically different

and richer styles of interaction with “stuff” instead of “things”.

In order to achieve smaller elements we will need to move

away from geared DC motors with wheels for locomotion to

other actuation, such as piezo actuators. Other micro-robots

have been developed which utilize compliant linkages with

piezo actuation to create locomotion similar to that of small

insects at much smaller scales [65], however power electronics

at this scale remain challenging [69]. Another contributing

factor which limits the number of robots is cost. Our current

robot design at small scales of production is around $50 USD

per robot in cost for parts and assembly. This makes swarms

larger than 30-40 cost prohibitive outside of research applica-

tions. With further design for manufacturing at larger scales,

the price per robot could be reduced, but other fabrication

techniques such as printable and foldable robots [11] may

ultimately enable much cheaper swarm interface systems.

Another large limitation is the interaction area, as well as

the type of surfaces on which the elements can move. Since

zooids’s movement relies on a set of small rubber wheels,

our system can only work for relatively flat surfaces with a

minimal amount of traction. This limits our system to 2D

interactions. Obviously, work on swarms of aerial drones [33]

present opportunities to make fully 3D interfaces. However,

we see great opportunity in further exploration of ground based

swarm interfaces that may be able to reconfigure into 2.5D

or even 3D displays. Taking inspiration from ants and other

insects, they could form complex shapes by interweaving and

connecting, or even rolling on top of each other [8, 59]. We

also see great potential for different classes of robots which

could help construct more 3D shapes, such as a ramp robot, or

other passive building blocks that could allow swarm interfaces

to form more complex structures similar to recent work in

swarm robotics [79].

Finally, we want to explore more application domains; now

that we have created a scalable platform we can explore and

quickly prototype. We believe information visualization is

an exciting area, especially for creating engagement and for

educational domains. It is also important to better understand

the benefits and drawbacks of swarm user interfaces compared

to traditional GUIs. For this purpose, conducting user studies

will identify favorable conditions for the use of swarm user

interfaces. We hope that our open source platform with also en-

courage other researchers, designers, and educators to explore

a range of applications, and will enable further evaluation and

study of tangible interaction principles.

CONCLUSION
We introduced swarm user interfaces, a new class of user

interfaces made of “independent self-propelled elements that

move collectively and react to user input”. We described

the technical implementation of Zooids, a novel open-source

platform for building swarm user interfaces, and illustrated

its possibilities through concrete examples. We hope that this

article and the Zooids platform will spur more research in

swarm user interfaces, and bring us closer to Sutherland and

Ishii’s visions of the ultimate user interface that is able to fully

combine human capabilities for physical manipulation with

the power of computing.

All necessary material and documentation for implementing

Zooids can be found at

https://github.com/PhysicalInteractionLab/SwarmUI/.

ACKNOWLEDGMENTS
This work was partially funded by the Région Ile de France,

DIM ISC-PIF. We would also like to thank Alexa Siu, Shenli

Yuan, Ernesto Ramirez and Pham Minh Hieu for investing so

much time and efforts.

REFERENCES
1. Ahlberg, C., Williamson, C., and Shneiderman, B.

Dynamic queries for information exploration: An

implementation and evaluation. In Proceedings of the
SIGCHI conference on Human factors in computing
systems, ACM (1992), 619–626.

9

http://www.htcvive.com
https://github.com/PhysicalInteractionLab/SwarmUI/

2. Alonso-Mora, J., Breitenmoser, A., Rufli, M., Siegwart,

R., and Beardsley, P. Multi-robot system for artistic

pattern formation. In Robotics and Automation (ICRA),
2011 IEEE International Conference on, IEEE (2011),

4512–4517.

3. Alonso-Mora, J., Lohaus, S. H., Leemann, P., Siegwart,

R., and Beardsley, P. Gesture based human-multi-robot

swarm interaction and its application to an interactive

display. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), IEEE (2015),

5948–5953.

4. Amano, K., and Yamamoto, A. Tangible interactions on a

flat panel display using actuated paper sheets. In

Proceedings of the 2012 ACM international conference
on Interactive tabletops and surfaces, ACM (2012),

351–354.

5. Bennett, E., and Stevens, B. The effect that touching a

projection augmented model has on object-presence. In

Information Visualisation, 2005. Proceedings. Ninth
International Conference on, IEEE (2005), 790–795.

6. Brave, S., Ishii, H., and Dahley, A. Tangible interfaces for

remote collaboration and communication. In Proceedings
of the 1998 ACM conference on Computer supported
cooperative work, ACM (1998), 169–178.

7. Chang, B.-W., and Ungar, D. Animation: from cartoons

to the user interface.

8. Cucu, L., Rubenstein, M., and Nagpal, R. Towards

self-assembled structures with mobile climbing robots. In

Robotics and Automation (ICRA), 2015 IEEE
International Conference on, IEEE (2015), 1955–1961.

9. Ducatelle, F., Di Caro, G., Pinciroli, C., and Gambardella,

L. Self-organized cooperation between robotic swarms.

Swarm Intelligence Journal 5, 2 (2011), 73–96.

10. Dudek, G., Jenkin, M., Milios, E., and Wilkes, D. A

taxonomy for swarm robots. In Intelligent Robots and
Systems’ 93, IROS’93. Proceedings of the 1993 IEEE/RSJ
International Conference on, vol. 1, IEEE (1993),

441–447.

11. Felton, S. M., Tolley, M. T., Onal, C. D., Rus, D., and

Wood, R. J. Robot self-assembly by folding: A printed

inchworm robot. In Robotics and Automation (ICRA),
2013 IEEE International Conference on, IEEE (2013),

277–282.

12. Fishkin, K. P. A taxonomy for and analysis of tangible

interfaces. Personal Ubiquitous Comput. 8 (September

2004), 347–358.

13. Fitzmaurice, G. W., and Buxton, W. An empirical

evaluation of graspable user interfaces: towards

specialized, space-multiplexed input. In Proc. CHI 1997,

43–50.

14. Follmer, S., Leithinger, D., Olwal, A., Cheng, N., and

Ishii, H. Jamming User Interfaces: Programmable

Particle Stiffness and Sensing for Malleable and

Shape-Changing Devices. In ACM Symposium on User
Interface Software and Technology (2012), 519–528.

15. Follmer, S., Leithinger, D., Olwal, A., Hogge, A., and

Ishii, H. inform: Dynamic physical affordances and

constraints through shape and object actuation. In

Proceedings of the 26th Annual ACM Symposium on User
Interface Software and Technology, UIST ’13, ACM

(New York, NY, USA, 2013), 417–426.

16. Futurelab, A. E. Drone 100 – the world record for intel

2015. http://tinyurl.com/drone100, 2016.

17. Gervais, R. Interaction and introspection with tangible
augmented objects. Phd dissertation, Université de

Bordeaux, Dec. 2015.

18. Goldstein, S. C., Campbell, J. D., and Mowry, T. C.

Programmable matter. Computer 38, 6 (2005), 99–101.

19. Greenberg, S., and Fitchett, C. Phidgets: easy

development of physical interfaces through physical

widgets. In Proceedings of the 14th annual ACM
symposium on User interface software and technology,

ACM (2001), 209–218.

20. Grieder, R., Alonso-Mora, J., Bloechlinger, C., Siegwart,

R., and Beardsley, P. Multi-robot control and interaction

with a hand-held tablet. In Workshop Proc. Int. Conf.
Robotics and Automation, vol. 131, Citeseer (2014).

21. Hauri, S., Alonso-Mora, J., Breitenmoser, A., Siegwart,

R., and Beardsley, P. Multi-robot formation control via a

real-time drawing interface. In Field and Service
Robotics, Springer (2014), 175–189.

22. Heer, J., and Robertson, G. G. Animated transitions in

statistical data graphics. Visualization and Computer
Graphics, IEEE Transactions on 13, 6 (2007),

1240–1247.

23. Horn, M. S., Solovey, E. T., Crouser, R. J., and Jacob,

R. J. Comparing the use of tangible and graphical

programming languages for informal science education.

In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’09, 975–984.

24. Hornecker, E., and Buur, J. Getting a grip on tangible

interaction: a framework on physical space and social

interaction. In Proceedings of the SIGCHI conference on
Human Factors in computing systems, ACM (2006),

437–446.

25. Huron, S., Jansen, Y., and Carpendale, S. Constructing

visual representations: Investigating the use of tangible

tokens. Visualization and Computer Graphics, IEEE
Transactions on 20, 12 (2014), 2102–2111.

26. Ishii, H., Lakatos, D., Bonanni, L., and Labrune, J.-B.

Radical atoms: beyond tangible bits, toward

transformable materials. interactions 19, 1 (Jan. 2012),

38–51.

27. Jansen, Y., Dragicevic, P., and Fekete, J.-D. Evaluating

the efficiency of physical visualizations. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, ACM (2013), 2593–2602.

10

http://tinyurl.com/drone100

28. Jansen, Y., Dragicevic, P., Isenberg, P., Alexander, J.,

Karnik, A., Kildal, J., Subramanian, S., and Hornbæk, K.

Opportunities and challenges for data physicalization. In

Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, ACM (2015),

3227–3236.

29. Kira, Z., and Potter, M. A. Exerting human control over

decentralized robot swarms. In Autonomous Robots and
Agents, 2009. ICARA 2009. 4th International Conference
on, IEEE (2009), 566–571.

30. Kojima, M., Sugimoto, M., Nakaruma, A., Tomita, M.,

Inami, M., and Nii, H. Augmented coliseum: An

augmented game environment with small vehicles.

Horizontal Interactive Human-Computer Systems,
International Workshop on 0 (2006), 3–8.

31. Kolling, A., Nunnally, S., and Lewis, M. Towards human

control of robot swarms. In Proceedings of the seventh
annual ACM/IEEE international conference on
human-robot interaction, ACM (2012), 89–96.

32. Kuhn, H. W. The hungarian method for the assignment

problem. Naval research logistics quarterly 2, 1-2 (1955),

83–97.

33. Kushleyev, A., Mellinger, D., Powers, C., and Kumar, V.

Towards a swarm of agile micro quadrotors. Autonomous
Robots 35, 4 (2013), 287–300.

34. Le Goc, M., Dragicevic, P., Huron, S., Boy, J., and

Fekete, J.-D. Smarttokens: Embedding motion and grip

sensing in small tangible objects. In Proceedings of the
28th Annual ACM Symposium on User Interface Software
& Technology, ACM (2015), 357–362.

35. Le Goc, M., Dragicevic, P., Huron, S., Boy, J., and

Fekete, J.-D. A better grasp on pictures under glass:

Comparing touch and tangible object manipulation using

physical proxies. In Proceedings of the International
Working Conference on Advanced Visual Interfaces,

ACM (2016), 76–83.

36. Lederman, S. J., and Campbell, J. I. Tangible graphs for

the blind. Human Factors: The Journal of the Human
Factors and Ergonomics Society 24, 1 (1982), 85–100.

37. Lee, J. C., Hudson, S. E., Summet, J. W., and Dietz, P. H.

Moveable interactive projected displays using projector

based tracking. In Proceedings of the 18th annual ACM
symposium on User interface software and technology,

ACM (2005), 63–72.

38. Lee, N., Kim, J., Lee, J., Shin, M., and Lee, W. Molebot:

mole in a table. In ACM SIGGRAPH 2011 Emerging
Technologies, ACM (2011), 9.

39. Leithinger, D., and Ishii, H. Relief: a scalable actuated

shape display. In Proceedings of the fourth international
conference on Tangible, embedded, and embodied
interaction, ACM (2010), 221–222.

40. Lifton, J., Broxton, M., and Paradiso, J. A. Experiences

and directions in pushpin computing. In IPSN 2005.

Fourth International Symposium on Information
Processing in Sensor Networks, 2005., IEEE (2005),

416–421.

41. Marquardt, N., Nacenta, M. A., Young, J. E., Carpendale,

S., Greenberg, S., and Sharlin, E. The haptic tabletop

puck: tactile feedback for interactive tabletops. In

Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces, ACM (2009), 85–92.

42. Marshall, M., Carter, T., Alexander, J., and Subramanian,

S. Ultra-tangibles: creating movable tangible objects on

interactive tables. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,

ACM (2012), 2185–2188.

43. Mi, H., and Sugimoto, M. Hats: interact using

height-adjustable tangibles in tabletop interfaces. In

Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces, ACM (2011), 71–74.

44. Microsoft. Sanddance: Visually explore, understand, and

present data. Online.

http://research.microsoft.com/en-us/projects/sanddance/,

2016.

45. Moere, A. V. Beyond the tyranny of the pixel: Exploring

the physicality of information visualization. In

Information Visualisation, 2008. IV’08. 12th
International Conference, IEEE (2008), 469–474.

46. Nielsen, J. Usability engineering.

47. Nowacka, D., Ladha, K., Hammerla, N. Y., Jackson, D.,

Ladha, C., Rukzio, E., and Olivier, P. Touchbugs:

Actuated tangibles on multi-touch tables. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, ACM (2013), 759–762.

48. Pangaro, G., Maynes-Aminzade, D., and Ishii, H. The

actuated workbench: Computer-controlled actuation in

tabletop tangible interfaces. In Proceedings of the 15th
Annual ACM Symposium on User Interface Software and
Technology, UIST ’02, 181–190.

49. Patten, J. Thumbles - robotic tabletop user interface

platform. TED.com (2014).

50. Patten, J., and Ishii, H. Mechanical constraints as

computational constraints in tabletop tangible interfaces.

In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’07, ACM (New

York, NY, USA, 2007), 809–818.

51. Patten, J., Ishii, H., Hines, J., and Pangaro, G. Sensetable:

A wireless object tracking platform for tangible user

interfaces. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’01, ACM

(New York, NY, USA, 2001), 253–260.

52. Patten, J., Recht, B., and Ishii, H. Audiopad: A tag-based

interface for musical performance. In Proceedings of the
2002 Conference on New Interfaces for Musical
Expression, NIME ’02, National University of Singapore

(Singapore, Singapore, 2002), 1–6.

11

53. Pedersen, E. W., and Hornbæk, K. Tangible bots:

interaction with active tangibles in tabletop interfaces. In

Proc. CHI, ACM (2011), 2975–2984.

54. Poupyrev, I., Nashida, T., Maruyama, S., Rekimoto, J.,

and Yamaji, Y. Lumen: Interactive visual and shape

display for calm computing. In ACM SIGGRAPH 2004
Emerging Technologies, SIGGRAPH ’04, ACM (New

York, NY, USA, 2004), 17–.

55. Poupyrev, I., Nashida, T., and Okabe, M. Actuation and

tangible user interfaces: the vaucanson duck, robots, and

shape displays. In TEI ’07, 205–212.

56. Rasmussen, M. K., Pedersen, E. W., Petersen, M. G., and

Hornbaek, K. Shape-changing interfaces: a review of the

design space and open research questions. In CHI ’12,

735–744.

57. Reznik, D., and Canny, J. A flat rigid plate is a universal

planar manipulator. In IEEE ICRA 1998, vol. 2, IEEE

(1998), 1471–1477.

58. Richter, J., Thomas, B. H., Sugimoto, M., and Inami, M.

Remote active tangible interactions. In Proceedings of the
1st international conference on Tangible and embedded
interaction, ACM (2007), 39–42.

59. Romanishin, J. W., Gilpin, K., and Rus, D. M-blocks:

Momentum-driven, magnetic modular robots. In

Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on, IEEE (2013), 4288–4295.

60. Rosenfeld, D., Zawadzki, M., Sudol, J., and Perlin, K.

Physical objects as bidirectional user interface elements.

Computer Graphics and Applications, IEEE 24, 1 (2004),

44–49.

61. Roudaut, A., Karnik, A., Löchtefeld, M., and

Subramanian, S. Morphees: toward high shape resolution

in self-actuated flexible mobile devices. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems, ACM (2013), 593–602.

62. Rubens, C., Braley, S., Gomes, A., Goc, D., Zhang, X.,

Carrascal, J. P., and Vertegaal, R. Bitdrones: Towards

levitating programmable matter using interactive 3d

quadcopter displays. In Proceedings of the 28th Annual
ACM Symposium on User Interface Software &
Technology, ACM (2015), 57–58.

63. Rubenstein, M., Ahler, C., and Nagpal, R. Kilobot: A low

cost scalable robot system for collective behaviors. In

Robotics and Automation (ICRA), 2012 IEEE
International Conference on, IEEE (2012), 3293–3298.

64. Rus, D. Programmable matter with self-reconfiguring

robots. In Proceedings of the 7th ACM international
conference on Computing frontiers, CF ’10, 51–52.

65. Sahai, R., Avadhanula, S., Groff, R., Steltz, E., Wood, R.,

and Fearing, R. S. Towards a 3g crawling robot through

the integration of microrobot technologies. In Robotics
and Automation, 2006. ICRA 2006. Proceedings 2006
IEEE International Conference on, IEEE (2006),

296–302.

66. Seah, S. A., Drinkwater, B. W., Carter, T., Malkin, R.,

and Subramanian, S. Dexterous ultrasonic levitation of

millimeter-sized objects in air. IEEE transactions on
ultrasonics, ferroelectrics, and frequency control 61, 7

(2014), 1233–1236.

67. Snape, J., van den Berg, J., Guy, S. J., and Manocha, D.

The hybrid reciprocal velocity obstacle. Robotics, IEEE
Transactions on 27, 4 (2011), 696–706.

68. Snape, J., van den Berg, J. P., Guy, S. J., and Manocha, D.

Independent navigation of multiple mobile robots with

hybrid reciprocal velocity obstacles. In IROS (2009),

5917–5922.

69. Steltz, E., Seeman, M., Avadhanula, S., and Fearing, R. S.

Power electronics design choice for piezoelectric

microrobots. In Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on, IEEE (2006),

1322–1328.

70. Sutherland, I. E. The ultimate display, 1965.

71. Taher, F., Hardy, J., Karnik, A., Weichel, C., Jansen, Y.,

Hornbæk, K., and Alexander, J. Exploring interactions

with physically dynamic bar charts. In Proceedings of the
33rd Annual ACM Conference on Human Factors in
Computing Systems, ACM (2015), 3237–3246.

72. Ullmer, B., and Ishii, H. The metadesk: Models and

prototypes for tangible user interfaces. In Proceedings of
the 10th Annual ACM Symposium on User Interface
Software and Technology, UIST ’97, ACM (New York,

NY, USA, 1997), 223–232.

73. Ullmer, B., Ishii, H., and Jacob, R. J. K. Token+constraint

systems for tangible interaction with digital information.

ACM Trans. Comput.-Hum. Interact. 12, 1 (Mar. 2005),

81–118.

74. Underkoffler, J., and Ishii, H. Urp: A luminous-tangible

workbench for urban planning and design. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’99, 386–393.

75. Victor, B. A brief rant on the future of interaction design.

http://tinyurl.com/bvrant, 2011.

76. Wakita, A., Nakano, A., and Kobayashi, N.

Programmable blobs: a rheologic interface for organic

shape design. In Proceedings of the fifth international
conference on Tangible, embedded, and embodied
interaction, ACM (2011), 273–276.

77. Weiser, M. Some computer science issues in ubiquitous

computing. Communications of the ACM 36, 7 (1993),

75–84.

78. Weiss, M., Schwarz, F., Jakubowski, S., and Borchers, J.

Madgets: Actuating widgets on interactive tabletops. In

Proceedings of the 23Nd Annual ACM Symposium on
User Interface Software and Technology, UIST ’10,

293–302.

79. Werfel, J., Petersen, K., and Nagpal, R. Designing

collective behavior in a termite-inspired robot

construction team. Science 343, 6172 (2014), 754–758.

12

http://tinyurl.com/bvrant

80. Yamamoto, A., Tsuruta, S., and Higuchi, T. Planar 3-dof

paper sheet manipulation using electrostatic induction. In

Industrial Electronics (ISIE), 2010 IEEE International
Symposium on, IEEE (2010), 493–498.

81. Yamanaka, S., and Miyashita, H. Vibkinesis: notification

by direct tap and’dying message’using vibronic

movement controllable smartphones. In Proceedings of
the 27th annual ACM symposium on User interface
software and technology, ACM (2014), 535–540.

82. Yao, L., Niiyama, R., Ou, J., Follmer, S., Della Silva, C.,

and Ishii, H. Pneui: Pneumatically actuated soft

composite materials for shape changing interfaces. In

Proceedings of the 26th Annual ACM Symposium on User
Interface Software and Technology, UIST ’13, 13–22.

83. Yi, J. S., Melton, R., Stasko, J., and Jacko, J. A. Dust &

magnet: multivariate information visualization using a

magnet metaphor. Information Visualization 4, 4 (2005),

239–256.

84. Zhao, J., and Moere, A. V. Embodiment in data sculpture:

a model of the physical visualization of information. In

Proceedings of the 3rd international conference on
Digital Interactive Media in Entertainment and Arts,

ACM (2008), 343–350.

13

	Introduction
	Background
	Tabletop Tangible User Interfaces
	Shape Displays and Programmable Matter
	Swarm Robotics
	Data Physicalization
	Swarm User Interfaces

	Swarm UI Examples with ZOOIDS
	Swarm Drawing
	Freehand Drawing
	Shapes
	Bézier Curves

	Interactive Swarm Visualization
	Time-Series Navigation
	Multiple Scatterplots

	Stop Motion Swarm Animation
	In-the-Wild Scenarios

	ZOOIDS Hardware and Software Design
	Hardware
	Robot Design
	Radio Communication
	Projector-based Tracking System
	Calibration

	Software

	Swarm UIs: Design Principles and Challenges
	Display: Things vs. Stuff
	Display: Fixed vs. Movable Elements
	Display: Fixed vs. Variable Numbers of Elements
	Display: Elements with an Identity vs. Interchangeable Elements
	Interaction: Element Manipulation
	Interaction: Differing Roles of Elements
	Environment: Extra Visual Feedback

	Limitations and Future Work
	Conclusion
	Acknowledgments
	References

