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Figure 1: Example Fidgeting Interactions: A) Flicking where the robot returns after being flicked or displaced, B) Magnet where
robots are either attracted to or repelled from one another, C) Circle where the robots form a shape and return to the shape
when disturbed, and D) Remote Control where moving the robot on the bottom moves other robots correspondingly.

ABSTRACT
Fidgeting is a common behavior that one tends to engage in during
periods of inattention or mind wandering. Although attempts were
undertaken to enhance fidget devices with advanced technology,
such as sensors and displays, no works exist that explored fidgeting
with actuated devices. To fill this gap, we introduce the concept of
programmable actuated fidgeting and the design space for Swarm-
Fidget. Programmable actuated fidgeting is a type of fidgeting that
involves devices integrated with actuators, sensors, and computing
to enable a dynamic and customizable interactive fidgeting expe-
rience. SwarmFidget is an instance of a platform where tabletop
swarm robots are used to facilitate programmable actuated fidget-
ing. To engage with actuated fidgets, users can input commands
through various modalities such as touch or gesture, and the actua-
tors in the fidgeting device will respond in a programmable manner
to provide haptic, visual, or audio feedback.

CCS CONCEPTS
• Human-centered computing→ Haptic devices; Collaborative
interaction.
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fidgeting, swarm robots, tangible user interface
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1 INTRODUCTION
During periods of what is perceived to be inattention or mind wan-
dering, people commonly engage in fidgeting [4]. Fidgeting is a
non-goal-directed activity, which is usually repetitive or patterned
and is typically initiated subconsciously. A growing body of studies
reports a variety of beneficial effects caused by fidgeting. In partic-
ular, authors advocate that fidgeting can assist in sustaining focus
and optimizing attention [2, 7], reducing stress [16], increasing play-
fulness and creativity [15]. Moreover, fidgeting can act as a means
of exercising [12] and improving motor skills [5], as a mechanism
to trace depression [17], and as a tool to track mental states [18].
People often gravitate towards fidgeting with surrounding multi-
purpose objects (e.g., pens, keys, fidget toys, etc.). However, we
envision that people may fidget with the robots that surround them
as autonomous robots become more common in our daily lives due
to advances in technology and the exponential growth of artificial
intelligence.

For this project, we focus on tabletop swarm robots - robots
resting on the top of the desk while people engage with knowledge
work at that desk. The fact that both grown-ups and kids tend to
fidget with surrounding objects (e.g., pens, clippers, erasers) while
performing knowledge work [6, 7] makes us believe that people
might fidget with co-present tabletop robots.
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Figure 2: Programmable Behavior is one of the primary fea-
tures of programmable actuated fidgeting. In the context of
SwarmFidget, as shown on the left, we show that a robot can
be programmed to behave as if it was connected to a point
via virtual spring and dampener where the mass (m), spring
constant (l), and damping coefficient (c) are allprogrammable.
As shown on the right, robots could also move in any arbi-
trary 2D trajectory.

Swarm robots are autonomous robots with sensing and commu-
nication capabilities that can act on tasks collaboratively. Swarm
robots exist in a variety of designs and implementations [3]. Table-
top swarm robots are small wheel-propelled robots with position
and touch-sensing capabilities capable of acting as a display, ini-
tiating actions, and reacting to the user’s input. Several projects
highlight that fidgeting preferences are very personal and pro-
pose customized or adjustable fidgeting artifacts. The utilization
of tabletop swarm robots for fidgeting will provide a customiz-
able, more engaging and interactive fidgeting experience due to
the programmability of their collective movement and dynamic
physicality. Swarm robots also offer additional advantages, such as
swarm intelligence, flexibility, and robustness to failure.

2 DESIGN SPACE OF SWARMFIDGET
Through rapid ideation sessions, we explored the unique design
space and affordances of fidgeting with swarm robots compared
to commercial fidgeting devices like fidget spinners. As we used
the definition of fidgeting from Carriere et al. [4], repetitive non-
goal-directed action, any ideas that involved an explicit purpose or
goal (e.g., any game-like interaction), or were non-repetitive (i.e.,
one-time action) were discarded. For the complete design space,
refer to the full paper [8].

2.1 Programmable Behavior
Conventional fidgeting tools are limited in their behavior, as they
rely on passive mechanical components such as springs. In contrast,
swarm robot-based fidgeting allows for programmable behaviors
not limited by the passive mechanical components. For example,
a robot can be programmed to behave as if it were connected to
a specific point by a spring, and when displaced from the equilib-
rium point, it will return to equilibrium as shown in Figure 2. The
spring constant of this virtual spring can also be fixed or variable
depending on the situation.

Figure 3: SwarmFidget allows fidgeting through different
modalities including touch, gesture, color, and visual motion

2.2 Interaction Modality
The design space of SwarmFidget offers a range of modalities for
both user input and robot feedback [8], as shown in Figure 3, ex-
tending its potential use scenarios and catering to users’ different
preferences and needs. Users can choose to interact with the robots
directly through touch or indirectly through gestures with their
hand or other body parts similar to prior work [1, 9, 11]. In terms of
robot feedback, the modality options include active or passive hap-
tic feedback, meaning that the robots can initiate the interaction or
the person can start it themselves. Additionally, visual feedback can
be conveyed through the use of colors and motion of the robots as
used in prior work [1, 10]. Audio feedback can be provided both in-
tentionally through external speakers and unintentionally through
the sounds of the motors as discussed in [14].

vs. 

interaction at scale reducing downtime interaction among robotsrobustness to failure

Figure 4: Leveraging Swarmness: having a swarm of robots
enable interaction not possible with a robot alone such as
interaction at scale, reducing downtime, robustness to failure,
and interaction among robots.

2.3 Leveraging Swarmness
Having a swarm of robots dramatically increases the scale of inter-
action from a simple dyadic interaction making it more interesting
or stimulating to fidget. Instead of being limited to just interaction
with one robot, users can interact with multiple robots as shown
in Figure 4. The robots will have the capacity to form complicated
shapes as shown in Figure 4, or patterns that could be dynamic,
meaning that the robots are not only forming different shapes but
are also constantly moving while maintaining shape. In addition
to interaction with users, interaction among robots is a design
parameter that can be leveraged for fidgeting. Furthermore, the
swarm can also reduce any downtimes that may be experienced
when interacting with just one robot, allowing users to fidget at a
faster pace as shown in Figure 4. Another commonly known benefit
of having a swarm of robots is its robustness. When a robot fails
(e.g., due to low battery, broken wheels, etc.), the redundancy of
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Figure 5: Robots are able to be proactive and initiate fidgeting
interactionswhenneeded such aswhen users are under stress

the system allows the remaining robots to adapt and replace the
vacancy of the failed robot.

2.4 Interaction Metaphors
Ideas for different ways robots can be used for fidgeting were de-
rived from familiar metaphors such as physics, existing toys or fid-
geting devices. As mentioned earlier, the robots can be programmed
to behave as if theywere a physical system. For example, magnetism
where each robot could have a virtual polarity and be attracted or
repelled to one another as described in the "Magnet" example fid-
geting interaction and shown in Figure 1B.

2.5 React vs. Proact
Interacting with conventional fidgeting devices involves individuals
performing an action on the device and receiving feedback in the
form of haptic and/or aural responses. Unlike these traditional
fidgeting devices, robots can be both reactive and proactive. In
situations where a person is feeling stressed or bored and could
benefit from a fidgeting break, robots can initiate the interaction
instead of waiting for the person to initiate it.

3 DEMONSTRATION APPLICATIONS
Drawing from the design space of SwarmFidget, we programmed six
demonstration applications using the small desktop robots (Zooids
[13] and Sony Toio Robots 1) as shown in Figure 1. The position of
each Toio robot can be tracked by the system using a tracking mat
with printed patterns. Each robot has dimensions of 3.2cm x 3.2cm
x 2.5cm and can move up to a speed of 24cm/sec. The tracking
mat, which covers an area of 30cm x 42cm on top of the table, is
capable of tracking the position with an error margin of 1mm. Due
to the portability of the Sony Toio platform, Toio is used for most
applications except for the "tap & rotate", which is implemented
using the Zooids platform without the projector for localization.

3.1 Flicking
The flicking interaction requires users to physically disturb the
robot, such as by flicking or pushing it, in order to move it out of
its position as shown in Figure 1A. and the robot moves back to its
original position.

1https://www.sony.com/en/SonyInfo/design/stories/toio/

Tap and Rotate Spring-loaded Car

Figure 6: Left: Tap & Rotate interaction where the robot will
rotate after being grabbed by the user. Right: Spring-loaded
car interaction where the robot will propel forward after
being pulled back similar to a spring-loaded car toy.

3.2 Tap & Rotate
The tap & rotate interaction requires the user to grab the robot and
release it, causing the robot to rotate, as shown in Figure 6.

3.3 Spring-loaded Car
The spring-loaded car interaction is akin to the action of a pull-back
toy car, where a user grabs and pulls the car to wind up the torsion
spring. Upon release, the toy car will move forward, utilizing the
energy stored in the torsion spring as shown in Figure 6.

3.4 Magnet
The magnet interaction is based on magnetism. As shown in Figure
1B, robots with opposite programmed polarity will be attracted to
each other once they are within a threshold, while those with the
same programmed polarity will be repelled from one another.

3.5 Circle
The circle interaction is similar to the flicking interaction in that the
robots are programmed to stay in a specified position as shown in
Figure 1C. In addition to properties relevant to the flicking interac-
tion, we can modify additional properties for this interaction, such
as the size and shape of the formation as well as the interaction
among the robots. For instance, the robots can either return to a
specific position every time or return to a position that optimizes
the distance traveled by all robots.

3.6 Remote Control
The remote control interaction, like the circle interaction, also
involves multiple robots. As shown in Figure 1D, the user controls
the robots indirectly by manipulating a single robot designated as
the control knob.

4 CONCLUSION
We introduced programmable actuated fidgeting, a new type of fid-
geting that involves devices integrated with actuators, sensors, and
computing to enable a customizable interactive fidgeting experi-
ence. In particular, we described and explored the use of tabletop
swarm robots to enable programmable actuated fidgeting. We il-
lustrated the design space of SwarmFidget and presented several
demonstration applications with the robots highlighting the poten-
tial of SwarmFidget for facilitating fidgeting.
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